DOI QR코드

DOI QR Code

A Study on the Safety Management Methods of Micro-Gas Engine Combined Heat and Power System

소형 가스엔진 열병합발전 시스템의 안전관리 방안에 관한 연구

  • Kim, So-Hyun (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Kim, Min-Woo (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Lee, Eun-Kyung (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • Lee, Jung-Woon (Institute of Gas Safety R&D, Korea Gas Safety Corporation)
  • 김소현 (한국가스안전공사 가스안전연구원) ;
  • 김민우 (한국가스안전공사 가스안전연구원) ;
  • 이은경 (한국가스안전공사 가스안전연구원) ;
  • 이정운 (한국가스안전공사 가스안전연구원)
  • Received : 2018.10.20
  • Accepted : 2018.12.11
  • Published : 2018.12.31

Abstract

The distribution of the combined heat and power system is active as a solution to the instability of energy supply and environmental pollution caused by continuous industrial development. In Korea, the safety standards for combined heat and power system using a gas engine are insufficient therefore the study on this is needed. In this study, the safety performance and structural/material assessment items of domestic and international standards applied to the combined heat and power system were analyzed to carry out a standardization study on safety performance applicable to 20 kW gas engine combined heat and power system. In addition, the safety performance assessment (plan) of the gas engine combined heat and power system was derived by performing risk analysis and risk assessment using HAZOP. Assessment items include engine ignition systems related to safety performance, piping tight performance, watering and temperature rise performance, combustion performance, electrical efficiency, thermal efficiency, overall efficiency and humidity performance. Gas and water pipes, gas control and shut-off valves, durability, heat resistance, and cold resistance of metal or non-metallic materials related to the structure and materials of the gas engine combined heat and power systems.

지속적인 산업 발전에 따른 에너지 수급의 불안정 및 환경오염 문제가 대두됨에 따라 이에 대한 해결 방안의 일환으로 열병합발전 시스템의 보급이 활발해지고 있다. 국내의 경우 가스엔진을 이용한 열병합발전기의 안전성능에 대한 검사기준이 미비하므로 이에 대한 연구가 필요한 실정이다. 본 연구에서는 20 kW급 가스엔진 열병합발전 시스템에 적용 가능한 안전성능 관련 표준화 연구 수행을 위해 열병합발전 시스템의 국내 외 기준에 대한 안전성능 및 구조/재료 평가기준을 분석하였다. 또한, 위험요소 분석 및 HAZOP (Hazard and Operability Studies)을 이용한 위험성평가를 수행하여 가스엔진 열병합발전 시스템의 안전성능 평가(안)을 도출하였으며, 평가항목으로는 안전성능 관련 엔진 시동, 배관 기밀 성능, 살수 및 온도 상승 성능, 연소 성능, 전기 효율, 열효율, 종합 효율, 습도 성능 등이 포함된다. 가스엔진 열병합발전 시스템의 구조 및 재료와 관련하여 가스 및 수배관, 가스 조절 및 차단밸브, 금속 또는 비금속 재료의 내구성, 내열성, 내한성에 대한 평가항목을 도출하였다.

Keywords

GSGSBE_2018_v22n6_76_f0001.png 이미지

Fig. 1. The diagram of micro-combined heat and power system.

Table 1. Domestic and international standards for combined heat and power systems

GSGSBE_2018_v22n6_76_t0001.png 이미지

Table 2. Gas engine combined heat and power system safety performance assessment items

GSGSBE_2018_v22n6_76_t0002.png 이미지

Table 3. Method of combustion state performance assessment

GSGSBE_2018_v22n6_76_t0003.png 이미지

Table 4. Classification of safety performance assessment items

GSGSBE_2018_v22n6_76_t0004.png 이미지

Table 5. Analysis of risk factors for gas engine combined heat and power system

GSGSBE_2018_v22n6_76_t0005.png 이미지

Table 6. Result of HAZOP study of micro-gas engine combined heat and power systems

GSGSBE_2018_v22n6_76_t0006.png 이미지

Table 7. Structural and material assessment items of internal combustion engine power system

GSGSBE_2018_v22n6_76_t0007.png 이미지

Table 8. The list of gas engine CHP system safety performance assessment items

GSGSBE_2018_v22n6_76_t0008.png 이미지

References

  1. Korea Electric Power Corporation, "2017 Statics of Electric Power in Korea", 87, 5-27, (2018)
  2. Korea Energy Economics Institute, "2017 Yearbook of Regional Energy Statistics", (2017)
  3. Hyundai Research Institute, "VIP Report-Structural Problems and Improvement Plans of Domestic Electricity Supply", 1-8, (2013)
  4. Kwon, O. J., "A Study on Smart Energy Network Model for Industrial Complexes Utilizing Distributed Power Resources", Soongsil University Master's Thesis, 1-7, (2018)
  5. The Korea Energy Management Corporation, "2003 Cogeneration Technology Guidebook", 20-203, (2003)
  6. Ministry of Trade Industry and Energy, "A Basic Plan for 8th Power Supply", (2017)
  7. Choi, J. J., Park, B. S., Jung, D. H., Kim, H. J., Ka- ng, S. H., Im, Y. H. and Song, D. S., "The Operation Characteristics of Domestic Stirling Engine and Reciprocating Gas Engine Cogeneration Systems", The Society of Air-Conditioning and Refrigerating Engineers of Korea, 739-743, (2010)
  8. Jeong, J. Y., "A Study on Application of Small-Scale Gas Cogeneration Facilities and Their Wider Uses", Hanyang University Master's Thesis, 1-7, (2007)
  9. Korea Energy Management Corporation, "2003 Cogeneration Technology Guidebook", 10-25, (2003)
  10. Korea Energy Agency, "2017 Group Energy Project Handbook", (2017)
  11. Oh, S. H., Kim, H. Y., Park, W. S. and Kim, S. M., "Standardization Study on Performance Test Method of Combined Heat and Power System for Buildings", Journal of Standards and Standard- ization, 7(2), 41-54, (2017)
  12. EN 50465, "European Product Standard for Combined Heating Power Systems using Gas Fuel", European Norm, (2015)
  13. EN 13203-4 "Gas-Fired Domestic Appliances Producing Hot Water", European Norm, (2016)
  14. EN 15316-4-4, "Energy Performance of Buildings -Method for Calculation of System Energy Requirements and System Efficiencies", European Norm, (2017)
  15. IEC 622-2-3-100, "Fuel Cell Technologies- Part 3-100: Stationary Fuel Cell Power Systems-Safety", International Electrotechnical Commission, (2014)
  16. IEC 62282-3-400, "Fuel Cell Technologies-Part 3-400: Stationary Fuel Cell Power Systems - Small Stationary Fuel Cell Power System with Combined Heat and Power Output", International Electrotechnical Commission, (2016)
  17. JIA F 025-06 "Regulation for Small Gas Engine Combined and Heat Power System Inspection", Japan Gas Appliances Inspection Association, (2009)
  18. JIS B 8122, "Test Methods for Measuring Performance of Cogeneration Unit", Japanese Industrial Standards committee, (2009)
  19. JIS B 8124, "Requirements of the Components of the Gas Engine Driven Cogeneration Package", Japanese Industrial Standards committee, (2018)
  20. KS B 8911, "Reciprocating Internal Combustion Gas Engines for Domestic Cogeneration - Power and Gas Consumptions Test Methods", Korean Agency of Technology and Standards, (2016)
  21. KS B 8912, "Domestic Combined Heat and Power Generator using Internal Gas Combustion Engines - Performance Test Methods", Korean Agency of Technology and Standards, (2016)
  22. KS B 8913, "Combined Heat and Power Unit using Internal Gas Combustion Engines for Building - Performance Test Methods", Korean Agency of Technology and Standards, (2017)
  23. SPS KEAA 17, "Domestic Combined Heat And Power Generation System Using Internal Gas Engines-Installation Requirements", Korea Energy Appli- ances Industry Association, (2016)
  24. KGS AB934, "Facility/Technical/Inspection Code for Manufacture of Gas Fuel Cells", Korea Gas Safety Corporation, (2016)
  25. Kang, S. J., "Case Study of Domestical Risk Assessment Trends and Analysis", Hanyang University Doctoral Thesis, 37-90, (2015)
  26. You, C. H., Kim, J. Y., "HAZOP Study for Risk Assessment and Safety Improvement Strategies of $CO_{2}$ Separation Process", Korean Chemical Engineering Research, 56(3), 335-342, (2018) https://doi.org/10.9713/KCER.2018.56.3.335
  27. Guide, K., "Risk and HAZOP", (2018)
  28. Kim, C. K., "Automotive Engineering, 4th Edition", Bogdoo, (2017)
  29. Lee, I. G. and Jung, D. H., "Automobile Fire", GoldenBell, (2014)