• Title/Summary/Keyword: Energy-intensive industry

Search Result 47, Processing Time 0.03 seconds

Construction Equipment Fleet Optimization for Saving Fuel Consumption (에너지 절감을 위한 건설장비 조합 최적화 방법 연구)

  • Yi, Chang-Yong;Lee, Hong-Chul;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.198-199
    • /
    • 2015
  • Construction equipment is a major energy consumption source in construction projects. If 10% reduction of the diesel fuel usage is achieved in the construction industry, it may reduce 5% of the total energy usage. Energy saving operation is a major issue in equipment-intensive operations (e.g., earthmoving or paving operations). Identifying optimal equipment fleet is important measure to achieve low-energy consumption in those operations. This study presents a system which finds an optimal equipment fleet by computing the low-energy performance of earthmoving operations. It establishes construction operation model and compares numerous combinations using alternative equipment allocation plans. It implements sensitivity analysis that facilitates searching the lowest energy consumption equipment fleet by enumerating all cases.

  • PDF

CO2 Emission Structure Analysis with Environmental Input-Output Table 2000 (환경산업연관표 2000을 이용한 산업부문의 이산화탄소(CO2) 발생 분석)

  • Kim, Yoon Kyung
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.425-450
    • /
    • 2006
  • The index of energy intensity(energy/GDP) has been a primary policy concern since it can clarify industry sectors which use energy intensively and generate $CO_2$ emission heavily. Although energy intensity index may be suitable for estimating $CO_2$ emission from an isolated industry sector, we need an index for induced $CO_2$ emission since industrial activities are interconnected in terms of input and output. By employing Environmental Input-Output Table 2000, this paper analyses the flow of energy demand and pollutants after first estimating an induced $CO_2$ emissions from various industrial sectors and economic activities. The paper reports higher induced $CO_2$ emissions from industry sectors with larger energy intensity since they produces goods or services retaining relatively considerable environmental load. Furthermore, it is shown that environmental load and $CO_2$ emissions in overall economy are likely increasing when the products of energy intensive industrial sector is used as inputs for less intensive sectors' production process. The result suggests we need consistent policy efforts to reduce energy intensity to lower $CO_2$ emissions.

  • PDF

Competitiveness of Energy Intensive Manufacturing Industries on Greenhouse Gas Mitigation Policies: Using Price Setting Power Model (온실가스 저감정책에 대한 에너지 다소비 제조업의 경쟁력 분석: 가격설정력 모형을 이용하여)

  • Han, Minjeong;Kim, Youngduk
    • Environmental and Resource Economics Review
    • /
    • v.20 no.3
    • /
    • pp.489-529
    • /
    • 2011
  • When greenhouse gas mitigation policies are implemented, energy intensive manufacturing industries are influenced much due to an increase in cost. However, industries that have price setting power are damaged less by the policies. Therefore, this paper analyzes vulnerability of energy intensive manufacturing industries to the policies by measuring price setting power of the industries. We analyzed price setting power model through ECM, employing the import prices and wages as independent variables. The industries that their prices react to import prices are price takers, which their prices are determined by rival's ones. On the other hand, the industry that their prices react to wages that mean domestic cost are price setters, and they will be less vulnerable to the policies. In addition, fluctuation of energy prices would be reflected in import prices because it influences other countries than my one. Thus, we employed energy prices as control variable to measure the net effects of import prices. As empirical results, petroleum products, chemical products, non-metallic mineral products, textiles, and motor vehicles sector have price setting power, so the industries have competitiveness on greenhouse gas mitigation policies.

  • PDF

The demand expanding strategy of new and renewable energy (신재생에너지 산업화 촉진을 위한 모색)

  • Kim, Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.493-502
    • /
    • 2007
  • The oil consuming country, Korea is spending amount to 220bn barrel per day. It is higher-ranked as 8th country among oil consuming country. France, Brazil, Italia, Spain have recorded GDP than it of Korea. But, the oil consuming of Korea is more than it of them. The GDP of Korea is ranked 11th country, based on 2005. But Korea is higher-ranked as 8th country among oil consuming country. The new and renewable energy as alternative of oil is first measurement. But, the supply of new and renewable energy is inactive 2.13% among total energies. The economist prospects about 1bn job creation during the ten years through new and renewable energy. The merit of new and renewable energy is capital intensive and higher valuable industry.

  • PDF

A Methodological Study on an Assessment Model Developed for the Mitigation of Acid rain Causing Material - Focus on Sulfur Dioxide Emission Reduction Measures - (철강업에 있어서 산성비 원인물질 저감대책평가 모형 구축에 관한 연구 - 아황산가스를 중심으로 -)

  • Lee, Dong-Kun;Jung, Tae-Yong;Jeon, Seong-Woo
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.71-82
    • /
    • 1998
  • This study focuses on one of the most typical energy-intensive industries, the steel industry. The two-fold purpose of the study is to develop a model to assess measures to alleviate sulfur dioxide($SO_2$) emissions from the steel industry and to propose a concrete $SO_2$ emission reduction measure from the steel industry. This study partially employed and modified AIM(Asia-Pacific Integrated Model) developed by Japan National Environmental Research Institute to develop AIM/KOREA SULFUR model for simulation. In the study, a base scenario, which is BAU(Business As Usual) scenario, and mitigation scenarios(a use of low-sulfur contain fuel, fuel conversion to cleaner energy, an induction of desulfurization systems, and energy saving) were employed. The results of the simulation are summarized below: The sulphur dioxide emission from the steel industry in 1992 was estimated to be 252,000 metric tons; however, according to BAU scenario, sulphur dioxide emission is expected to be increased to 586,000 metric tons, which is 2.3 times greater than that in 1992 by year 2020. To alleviate such increasement, simulation results under various 7scenarios proved that some degrees of reduction may be possible by an induction of desulfurization systems although there may be numerous ways to interpretate the simulation results; however, the bottom line is that it appears to be difficult to achieve the Korean Ministry of Environment's policy goal-a mitigation of sulphur dioxide concentration to 0.01ppm.

  • PDF

A Study on the Estimation of Emission Factors for Greenhouse Gas (CO2) in Cement Industry (시멘트 산업부문 온실가스(CO2) 배출계수 산정 연구)

  • Song, H.D.;Hong, J.H.;Um, Y.S.;Lee, S.B.;Kim, D.G.;Kim, J.S.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.158-168
    • /
    • 2007
  • The cement industry is one of the energy intensive industries such as petrochemical and steel industry. The energy efficiency of cement industry is high comparing to oversea's cement industries due to the enforcement of energy conservation policies. The purpose of this study is estimate emission factors for greenhouse gas ($CO_{2}$) in cement industry. The results of field study, quicklime contained quantity of five factories were $0.64{\sim}0.65$. Measurement emission (15,382 ton/day) is 40% higher than process emission (8,929 ton/day) on the IPCC Guidelines (1996). Add to combustion emission on the lines of IPCC Guidelines (1996) is similar to the emission of this study. The emission factor of greenhouse gas ($CO_{2}$) were as follows the emission factor between $9.01E-01{\sim}2.15E-01\;ton/ton$ for $CO_{2}$. The result of this study is higher than emission factor of IPCC (0.51) but it is similar to U.S. EPA's (0.952).

Lot Planning & Scheduling in the Integrated Steelmaking Process

  • Park Hyungwoo;Hong Yushin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • Steel industry is the most capital intensive and the largest energy consuming industry, which operate huge and complex facilities to supply various steel products as the primary materials to almost every manufacturing industry Major steel products are hot-rolled and cold-rolled coils, plates, and wires that are produced through molten iron making, molten steel making, casting, and rolling. Each process runs in batch between setups and the specifications or bach are different with each other High energy consuming and heavy material handling require careful synchronization or processes, as well. Considering the synchronization or processes, the lot planning and scheduling problem in the integrated steelmaking process rovers the roll grouping with given casts. the sequencing or rolls over time, and the machine assignment and time scheduling or charges and casts. The problem is investigated by dividing it into two cases whether single or parallel machines at the molten steel making and the continuous casting processes. Problem descriptions and solution approaches or each instance are introduced. To test their performance and conformity, implementation or the algorithms and numerical experiments are carried out with real world and constructed data sets.

  • PDF

A Review on the Field Activities for the Human Error Prevention in a Semiconductor Company (반도체 회사의 인적 오류 예방 활동 사례 및 검토)

  • Lee, Yong-Hee;Lee, Yong-Hee;Ruy, Jae-Seng
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.117-125
    • /
    • 2011
  • While human error happens repeatedly in the semiconductor industry in Korea, which has brought a tremendous loss from manpower, welfare etc., there are limitations to human error prevention activities. When a semiconductor company introduces new machines and facilities from Japan or Germany, the companies often do not consider human factors in the design. Also, semiconductor companies are so occupied with promoting increased productivity, their attention to human errors has been pushed aside. Negative aspects of technical exchange associated with safety management are one aspect of the industry's nature. A semiconductor company recently began acknowledging on the back of TQM(Total Quality Management) that human error has a decisive effect on the safety. There are a number of uncontrollable and hard to handle event sets because the nature of these events with a human error may often be threatened or very intensive. It is strongly required that systemic studies should be performed to grasp the whole picture of a current situation for hazard factors. This study aims to examine the human error approach through the case of human error prevention field activities in a semiconductor industry compared with the activities and experience in nuclear power plants.

Patents and Papers Trends of Solar-Photovoltaic(PV) Technology using LDA Algorithm (LDA알고리즘을 활용한 태양광 에너지 기술 특허 및 논문 동향 연구)

  • Lee, Jong-Ho;Lee, In-Soo;Jung, Kyeong-Soo;Chae, Byeong-Hoon;Lee, Joo-Yeoun
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.231-239
    • /
    • 2017
  • Solar energy is attracting attention as an alternative to fossil fuels. However, there was a lack of discussion on the overall research direction and future direction of research in technology development. In order to develop more effective technology, we analyzed and discussed the technology trend of solar energy using patent data and thesis data. As an analysis method, topics were selected by using topic modeling and text mining, the increase of included keywords was analyzed, and the direction of development of solar technology was analyzed. Research on solar power generation technology is expected to proceed steadily, and it is analyzed that intensive research will be done especially on high efficiency and high performance technology. Future studies could be conducted by adding overseas patent data and various paper data.

Current Status of Waste Heat Recovery System in Cement Industry (시멘트 산업 폐열 회수 현황)

  • Young-Jin Kim;Jun-Hyung Seo;Yang-Soo Kim;Seok-Je Kwon;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.31 no.6
    • /
    • pp.3-17
    • /
    • 2022
  • The cement industry, which is an energy-intensive and high carbon dioxide emission industry, requires strategy for carbon neutrality and sustainable development. Most domestic cement companies are generating electricity by waste heat recovery system to improve energy efficiency during cement processes; however, few studies exist on recycling of energy related to this. Certain countries with high cement production researched on modifying the conventional waste heat recovery system to maximize waste heat recovery using various methods such as applying the Rankine cycle depending on the temperature, comparing working fluids, applying two or more Rankine cycles, and combining with other industries. In this study, we reviewed the research direction for energy efficiency improvement by summarizing waste heat recovery and utilization methods in the domestic and overseas cement industries.