DOI QR코드

DOI QR Code

Current Status of Waste Heat Recovery System in Cement Industry

시멘트 산업 폐열 회수 현황

  • Young-Jin, Kim (Korea Institute of Limestone and Advanced Materials) ;
  • Jun-Hyung, Seo (Korea Institute of Limestone and Advanced Materials) ;
  • Yang-Soo, Kim (Korea Institute of Limestone and Advanced Materials) ;
  • Seok-Je, Kwon (Korea Institute of Limestone and Advanced Materials) ;
  • Kye-Hong, Cho (Korea Institute of Limestone and Advanced Materials) ;
  • Jin-Sang, Cho (Korea Institute of Limestone and Advanced Materials)
  • 김영진 (한국석회석신소재연구소) ;
  • 서준형 (한국석회석신소재연구소) ;
  • 김양수 (한국석회석신소재연구소) ;
  • 권석제 (한국석회석신소재연구소) ;
  • 조계홍 (한국석회석신소재연구소) ;
  • 조진상 (한국석회석신소재연구소)
  • Received : 2022.11.17
  • Accepted : 2022.11.25
  • Published : 2022.12.31

Abstract

The cement industry, which is an energy-intensive and high carbon dioxide emission industry, requires strategy for carbon neutrality and sustainable development. Most domestic cement companies are generating electricity by waste heat recovery system to improve energy efficiency during cement processes; however, few studies exist on recycling of energy related to this. Certain countries with high cement production researched on modifying the conventional waste heat recovery system to maximize waste heat recovery using various methods such as applying the Rankine cycle depending on the temperature, comparing working fluids, applying two or more Rankine cycles, and combining with other industries. In this study, we reviewed the research direction for energy efficiency improvement by summarizing waste heat recovery and utilization methods in the domestic and overseas cement industries.

이산화탄소 배출량 및 에너지 사용이 많은 시멘트 산업은 탄소중립 실현 및 지속적인 발전을 위한 전략이 필요하다. 에너지 효율 향상을 위해 국내 대부분의 시멘트 업체에서 폐열 회수 시스템을 구축하여 전력을 생산하고 있으나, 이와 관련된 에너지 재활용 연구는 거의 없는 실정이다. 시멘트 생산이 많은 국가에서는 기존의 폐열 회수 시스템을 보완하기 위해 온도에 따라 적용하는 랭킨사이클 변경, 작동유체 비교, 2단 이상의 랭킨 사이클 적용 및 타 산업과의 연계 등을 통해 폐열 회수를 극대화하기 위한 연구를 수행하는 것으로 확인되었다. 본 연구에서는 국내외 시멘트 산업에서의 폐열 회수 및 활용에 대해 정리하여 에너지 효율 향상을 위해 필요한 연구 방향을 도출하고자 하였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제입니다(No. 20212010200100).

References

  1. Korea Cement Association, Eco business, http://www.cement.or.kr/plus_2014/plus04.asp?sm=7_5_0.
  2. Yang, I. J., Park, J. H., Kim, Y. S., 2022 : Recommendations for carbon neutrality and ESG management in mining industry, The Korean Society of Mineral and Energy Resources Engineers, 59(5), pp.474-488. https://doi.org/10.32390/ksmer.2022.59.5.474
  3. Schneider, M., 2019 : The cement industry on the way a low-carbon future, Cement and Concrete Research, 124, 105792.
  4. Pieper, C., Wirtz, S., Schaefer, S., et al., 2021 : Numerical investigation of the impact of coating layers on RDF combustion and clinker properties in rotary cement kilns, Fuel, 283, 118951.
  5. Park, M. H., 1993 : Waste heat recovery system of cement plant, Cement Symposium, 21, pp.26-32.
  6. Seo, H. N., 2004 : Waste heat recovery system, Cement Symposium, 164, pp.15-18.
  7. Cho, Y. J., 2010 : Waste heat recovery system and CO2 reduction, Cement Symposium, 186, pp.43-49.
  8. Jokar, Z., Mokhrar, A., 2018 : Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development- A system dynamics approach, Journal of Cleaner Production, 201, pp.142-155. https://doi.org/10.1016/j.jclepro.2018.07.286
  9. Wang, H., Xu, J., Yang, X., et al., 2015 : Organic rankine cycle saves energy and reduces gas emissions for cement production, Energy, 86, pp.59-73. https://doi.org/10.1016/j.energy.2015.03.112
  10. Bertrand, A., Menacho, A. J. H., Badillok B. L., 2022 : Waste heat-topower with steam and organic rankine cycles: potentials and feed-in tariffs in the EU27+UK, EU27+UK, Energy Reports, 8, pp.12552-12569. https://doi.org/10.1016/j.egyr.2022.09.075
  11. Zeb, K., Ali, S. M., Khan, B., et al., 2017 : A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan, Renewable and Sustainable Energy Reviews, 75, pp.1142-1155. https://doi.org/10.1016/j.rser.2016.11.096
  12. Zaferani, S. H., Jafarian, M., Vashaee, D., et al., 2021 : Thermal management systems and waste heat recycling by thermoelectric generators - an overview, Energies, 14, pp.5646.
  13. Rad, E. A., Mohammadi, S., 2018 : Energetic and exergetic optimized rankine cycle for waste heat recovery in a cement factory, Applied thermal engineering, 132, pp. 410-422. https://doi.org/10.1016/j.applthermaleng.2017.12.076
  14. Fierro, J. J., Hernandez-Gomez, C., Marenco-Porto, C. A., et al., 2022 : Exergy-economic comparison of waste heat recovery cycles for a cement industry case study, Energy conversion and management: X, 13,100180.
  15. Junior, E. P. B., Arrieta, M. D. P., Arrieta, F. R. P., et al., 2019 : Assessment of a kalina cycle for waste heat recovery in the cement industry, Applied thermal engineering, 147, pp.421-437. https://doi.org/10.1016/j.applthermaleng.2018.10.088
  16. Costa Horta, G. R., Junior, E. P. B., Moreira, L. F., et al., 2021 : Comparison of kalina cycles for heat recovery application in cement industry, Applied thermal engineering, 19, 117167.
  17. Newsway, https://www.newsway.co.kr/news/view?ud=2018060513385042694.
  18. Moreira, L. F., Arrieta, F. R. P., 2019 : Thermal and economic assessment of organic rankine cycles for waste heat recovery in cement palnts, Renewable and Sustainable Energy Reviews, 114, 109315.
  19. Ko, A., Park, S., Kim, J. Y., et al., 2018 : Development and reliability optimization of economic analysis module for power generation system from industrial waste heat recovery, Journal of Energy Engineering, 27(4), pp.50-63. https://doi.org/10.5855/ENERGY.2018.27.4.050
  20. Kim, J. Y., Cha, J. M., Park, S. H., et al., 2018 : Design of economic analysis module for waste heat recovery based on system engineering approach, Journal of KOSSE, 14(1), pp.1-12.
  21. Kwon, D. U., Heo, K. M., Yoon, S. H., et al., 2014 : Performance characteristics of organic rankine cycle using medium temperature waste heat with different working fluids, The Plant Journal, 10(2), pp.38-47.
  22. Kim, K. S., Bang, S. G., Seo, I. H., et al., 2019 : A study on the engineering design for 250kW-grade waste gas heat recovery, Journal of the Korean Society of Manufacturing Process Engineering, 18(5), pp.90-95.
  23. Cho, S. Y., Cho, C. H., 2015 : Effect of the cycle by the properties of working fluids using organic rankine cycle, Journal of Fluid Machinery, 18(4), pp.5-12.
  24. Liu, L., Yang, Q., Cui, G., 2020 : Supercritical carbon dioxide(s-CO2) power cycle for waste heat recovery: a review from thermodynamic perspective, Processes, 8, 1461.
  25. Kim, K. H., Jung, Y. G., Ko, H. J., 2020 : Comparative exergy analysis of kalina and organic rankine cycles for conversion of low-grade heat source, Trans. of Korean Hydrogen and New Energy Society, 31(1), pp.105-111. https://doi.org/10.7316/KHNES.2020.31.1.105
  26. Waste-heat, https://www.waste-heat.eu/about-waste-heat.
  27. Pradeep Varma, G. V., Srinivas, T., 2015 : Desing and analysis of a coeneration plant using heat recovery of a cement factory, Case Studies in Thermal Engineering, 5, pp.24-31. https://doi.org/10.1016/j.csite.2014.12.002
  28. Fergani, Z., Touil, D., Morosuk, T., 2015 : Multi-criteria exergy based optimization of an organic rankine cycle for waste heat recovery in the cement industry, Energy Conversion and Management, 112, pp.81-90. https://doi.org/10.1016/j.enconman.2015.12.083
  29. Fierro, J. J., Escudero-Atehortua, A., Nieto-Londono, C., et al., 2020 : Evaluation of waste heat recovery technologies for the cement industry, International Journal of Thermofluids, 7-8, 100040.
  30. He, C., Liu, C., Gao, H., et al., 2012 : The optimal evaporation temperature and working fluids for subcritical organic rankine cycle, Energy, 38, pp.136-143. https://doi.org/10.1016/j.energy.2011.12.022
  31. Ahmed, A., Esmaeil, K. K., Irfan, M. A., et al., 2018 : Design methodology of organic rankine cycle for waste heat recovery in cement plants, Applied Thermal Engineering, 129, pp.421-430. https://doi.org/10.1016/j.applthermaleng.2017.10.019
  32. Laazaar, K., Boutammachte, N., 2022 : Development of new technique of waste heat recovery in cement plants based on stirling engine technology, Applied Thermal Engineering, 210, 118316.
  33. Wang, J., Dai, Y., Gao, L., 1994 : Exergy analysis and parametric optimizations for different cogeneration power plants in cement industry, Applied Energy, 86, pp.941-948. https://doi.org/10.1016/j.apenergy.2008.09.001
  34. Naeimi, A., Bidi, M., Ahmadi, M. H., et al., 2019 : Design and exergy analysis of waste recovery system and gas engine for power generation in Tehran cement factory, Thermal Science and Engineering Progress, 9, pp.299-307. https://doi.org/10.1016/j.tsep.2018.12.007
  35. Chen, H., Wang, Y., An, L., et al., 2022 : Performance evaluation of a noble design for the waste heat recovery of a cement plant incorporating a coal-fired power plant, Energy, 246, 1233420.
  36. Ozturk, M., Dincer, I., 2022 : Utilization of waste heat from cement plant to generate hydrogen and blend it with natural gas, International Journal of Hydrogen Energy, 47, pp.20695-20704. https://doi.org/10.1016/j.ijhydene.2022.04.214
  37. Kharter, A. M., Soliman, A., Ahmed, T. S., et al., 2021 : Power generation in white cement plants from waste heat recovery using steam-organic combined rankine cycle, Case Studies in Chemical and Environmental Engineering, 4, 100138.
  38. Wang, Y., Chen, H., Wang, H., et al., 2022 : A novel carbon dioxide capture system for a cement plant based on waste heat utilization, Energy Conversion and Management, 257, 115426.
  39. Ghalandari, V., Majd, M. M., Golestanian, A., et al., 2019 : Energy audit for pyro-processing unit of a new generation cement plant and feasibility study for recovering waste heat: A case study, Energy, 22(6), pp.833-843. https://doi.org/10.1016/j.energy.2019.02.102
  40. Sanaye, S., Khakpaay, N., Chitsaz, A., et al., 2020 : A comperhensive approach for designing, modeling nad optimizaing of waste heat recovery cycle and power generation system in a cement plant: A thermo-economic and environmental assessment, Energy Conversion and Management, 205, 112353.