• 제목/요약/키워드: Energy state

검색결과 4,947건 처리시간 0.029초

Influence of Device Parameters Spread on Current Distribution of Paralleled Silicon Carbide MOSFETs

  • Ke, Junji;Zhao, Zhibin;Sun, Peng;Huang, Huazhen;Abuogo, James;Cui, Xiang
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.1054-1067
    • /
    • 2019
  • This paper systematically investigates the influence of device parameters spread on the current distribution of paralleled silicon carbide (SiC) MOSFETs. First, a variation coefficient is introduced and used as the evaluating norm for the parameters spread. Then a sample of 30 SiC MOSFET devices from the same batch of a well-known company is selected and tested under the same conditions as those on datasheet. It is found that there is big difference among parameters spread. Furthermore, comprehensive theoretical and simulation analyses are carried out to study the sensitivity of the current imbalance to variations of the device parameters. Based on the concept of the control variable method, the influence of each device parameter on the steady-state and transient current distributions of paralleled SiC MOSFETs are verified separately by experiments. Finally, some screening suggestions of devices or chips before parallel-connection are provided in terms of different applications and different driver configurations.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

An Investigation Into the Relationship Between Metabolic Responses and Energy Regulation in Antibody-Producing Cell

  • Sun, Ya-Ting;Zhao, Liang;Ye, Zhao-Yang;Fan, Li;Liu, Xu-Ping;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1586-1597
    • /
    • 2013
  • Energy-efficient metabolic responses were often noted in high-productive cultures. To better understand these metabolic responses, an investigation into the relationship between metabolic responses and energy regulation was conducted via a comparative analysis among cultures with different energy source supplies. Both glycolysis and glutaminolysis were studied through the kinetic analyses of major extracellular metabolites concerning the fast and slow cell growth stages, respectively, as well as the time-course profiles of intracellular metabolites. In three cultures showing distinct antibody productivities, the amino acid metabolism and energy state were further examined. Both the transition of lactate from production to consumption and steady intracellular pools of pyruvate and lactate were observed to be correlated with efficient energy regulation. In addition, an efficient utilization of amino acids as the replenishment for the TCA cycle was also found in the cultures with upregulated energy metabolism. It was further revealed that the inefficient energy regulation would cause low cell productivity based on the comparative analysis of cell growth and productivity in cultures having distinct energy regulation.

A New Model and Equation Derived From Surface Tension and Cohesive Energy Density of Coagulation Bath Solvents for Effective Precipitation Polymerization of Acrylonitrile

  • Zhou, You;Xue, Liwei;Yi, Kai;Zhang, Li;Ryu, Seung Kon;Jin, Ri Guang
    • Carbon letters
    • /
    • 제13권3호
    • /
    • pp.182-186
    • /
    • 2012
  • A new model and resultant equation for the coagulation of acrylonitrile monomers in precipitation polymerization are suggested in consideration of the surface tension (${\gamma}$) and cohesive energy density ($E_{CED}$). The equation was proven to be quite favorable by considering figure fittings from known surface tensions and cohesive energy densities of certain organic solvents. The relationship between scale value of surface tension (${\gamma}$/M) and cohesive energy density of monomers can be obtained by changing the coagulation bath component for effective precipitation polymerization of acrylonitrile in wet spinning.

Declutching control of a point absorber with direct linear electric PTO systems

  • Zhang, Xian-Tao;Yang, Jian-Min;Xiao, Long-Fei
    • Ocean Systems Engineering
    • /
    • 제4권1호
    • /
    • pp.63-82
    • /
    • 2014
  • Declutching control is applied to a hemispherical wave energy converter with direct linear electric Power-Take-Off systems oscillating in heave direction in both regular and irregular waves. The direct linear Power-Take-Off system can be simplified as a mechanical spring and damper system. Time domain model is applied to dynamics of the hemispherical wave energy converter in both regular and irregular waves. And state space model is used to replace the convolution term in time domain equation of the heave oscillation of the converter due to its inconvenience in analyzing the controlled motion of the converters. The declutching control strategy is conducted by optimal command theory based on Pontryagin's maximum principle to gain the controlled optimum sequence of Power-Take-Off forces. The results show that the wave energy converter with declutching control captures more energy than that without control and the former's amplitude and velocity is relatively larger. However, the amplification ratio of the absorbed power by declutching control is only slightly larger than 1. This may indicate that declutching control method may be inapplicable for oscillating wave energy converters with direct linear Power-Take-Off systems in real random sea state, considering the error of prediction of the wave excitation force.

Multiconfiguration Molecular Mechanics Studies for the Potential Energy Surfaces of the Excited State Double Proton Transfer in the 1:1 7-Azaindole:H2O Complex

  • Han, Jeong-A;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.365-371
    • /
    • 2010
  • The multiconfiguration molecular mechanics (MCMM) algorithm was used to generate potential and vibrationally adiabatic energy surfaces for excited-state tautomerization in the 1:1 7-azaindole:$H_2O$ complex. Electronic structures and energies for reactant, product, transition state were computed at the CIS/6-31G(d,p) level of theory. The potential and vibrationally adiabatic energies along the reaction coordinate were generated step by step by using 16 high-level Shepard points, which were computed at the CIS/6-31G(d,p) level. This study shows that the MCMM method was applied successfully to make quite reasonable potential and adiabatic energy curves for the excited-state double proton transfer reaction. No stable intermediates are present in the potential energy curve along the reaction coordinate of the excited-state double proton transfer in the 1:1 7-azaindole:$H_2O$ complex, indicating that these two protons are transferred concertedly. The change in the bond distances along the reaction coordinate shows that two protons move very asynchronously to make an $H_3O^+$-like moiety at the transition state.

Coordinated Control Strategy and Optimization of Composite Energy Storage System Considering Technical and Economic Characteristics

  • Li, Fengbing;Xie, Kaigui;Zhao, Bo;Zhou, Dan;Zhang, Xuesong;Yang, Jiangping
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.847-858
    • /
    • 2015
  • Control strategy and corresponding parameters have significant impacts on the overall technical and economic characteristics of composite energy storage systems (CESS). A better control strategy and optimized control parameters can be used to improve the economic and technical characteristics of CESS, and determine the maximum power and stored energy capacity of CESS. A novel coordinated control strategy is proposed considering the coordination of various energy storage systems in CESS. To describe the degree of coordination, a new index, i.e. state of charge coordinated response margin of supercapacitor energy storage system, is presented. Based on the proposed control strategy and index, an optimization model was formulated to minimize the total equivalent cost in a given period for two purposes. The one is to obtain optimal control parameters of an existing CESS, and the other is to obtain the integrated optimal results of control parameters, maximum power and stored energy capacity for CESS in a given period. Case studies indicate that the developed index, control strategy and optimization model can be extensively applied to optimize the economic and technical characteristics of CESS. In addition, impacts of control parameters are discussed in detail.

UMTS 상태 천이 방식에서 에너지 소비와 활성 지연간의 트레이드오프 성능 분석 (Performance Analysis of Tradeoff between Energy Consumption and Activation Delay in UMTS State Transition Mechanism)

  • 최현호
    • 한국통신학회논문지
    • /
    • 제37A권12호
    • /
    • pp.1085-1092
    • /
    • 2012
  • 이동통신 시스템은 무선 자원과 배터리 전력을 효율적으로 관리하기 위해 사용자 상태 천이 방식을 정의하고 있다. 이러한 상태 천이 방식에서는 에너지 소비가 많은 상태가 기본적으로 짧은 접속 지연을 제공하므로 에너지와 지연 성능 사이에 트레이드오프 관계가 존재한다. 본 논문에서는 이동 응용 서비스의 트래픽 속성을 고려하여 UMTS 시스템의 사용자 상태 천이 방식을 분석한다. 상태 천이 방식의 마르코프 모델링을 통하여 에너지 소비량과 활성 지연을 수학적으로 도출하고 운용 파라미터에 따라 이들의 트레이드오프 관계를 파악한다. 분석 결과로 도출된 에너지-지연 트레이드오프 곡선은 주어진 상태 천이 방식이 달성 가능한 성능 한계를 보여주며 지연 요구사항을 보장하면서 에너지 소비를 최소화하는 최적 운용 전략을 제시한다.

QoE-aware Energy Efficiency Maximization Based Joint User Access Selection and Power Allocation for Heterogeneous Network

  • Ji, Shiyu;Tang, Liangrui;Xu, Chen;Du, Shimo;Zhu, Jiajia;Hu, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권10호
    • /
    • pp.4680-4697
    • /
    • 2017
  • In future, since the user experience plays a more and more important role in the development of today's communication systems, quality of experience (QoE) becomes a widely used metric, which reflects the subjective experience of end users for wireless service. In addition, the energy efficiency is an increasingly important problem with the explosive growth in the amount of wireless terminals and nodes. Hence, a QoE-aware energy efficiency maximization based joint user access selection and power allocation approach is proposed to solve the problem. We transform the joint allocation process to an optimization of energy efficiency by establishing an energy efficiency model, and then the optimization problem is solved by chaotic clone immune algorithm (CCIA). Numerical simulation results indicate that the proposed algorithm can efficiently and reliably improve the QoE and ensure high energy efficiency of networks.

Resource Allocation for Relay-Aided Cooperative Systems Based on Multi-Objective Optimization

  • Wu, Runze;Zhu, Jiajia;Hu, Hailin;He, Yanhua;Tang, Liangrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.2177-2193
    • /
    • 2018
  • This paper studies resource allocation schemes for the relay-aided cooperative system consisting of multiple source-destination pairs and decode-forward (DF) relays. Specially, relaying selection, multisubcarrier pairing and assignment, and power allocation are investigated jointly. We consider a combinatorial optimization problem on quality of experience (QoE) and energy consumption based on relay-aided cooperative system. For providing better QoE and lower energy consumption we formulate a multi-objective optimization problem to maximize the total mean opinion score (MOS) value and minimize the total power consumption. To this end, we employ the nondominated sorting genetic algorithm version II (NSGA-II) and obtain sets of Pareto optimal solutions. Specially, two formulas are devised for the optimal solutions of the multi-objective optimization problems with and without a service priority constraint. Moreover, simulation results show that the proposed schemes are superior to the existing ones.