• Title/Summary/Keyword: Energy efficiency evaluation

Search Result 872, Processing Time 0.031 seconds

Performance Evaluation of a Variable Frequency Heat Pump Air Conditioning System for Electric Bus

  • Peng, Qinghong;Du, Qungui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • This study presents a simulation model of a heat pump air conditioning system with a variable capacity compressor and variable speeds fans for electric bus. An experimental sample has been developed in order to check results from the model. Effects on system performance of such working conditions as compressor speed, evaporator fans speeds and the condenser fans speeds have been simulated by means of developed model. The results show that the three speeds can be adjusted simultaneously according to actual working condition so that the AC system can operate under the optimum state which the control objects want to achieve. It would be a good and simple solution to extend the driving ranges of EVs because of the highest efficiency and the lowest energy consumption of AC system.

A Study on Performance Evaluation of Typical Classification Techniques for Micro-cracks of Silicon Wafer (실리콘 웨이퍼 마이크로크랙을 위한 대표적 분류 기술의 성능 평가에 관한 연구)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.6-11
    • /
    • 2016
  • Silicon wafer is one of main materials in solar cell. Micro-cracks in silicon wafer are one of reasons to decrease efficiency of energy transformation. They couldn't be observed by human eye. Also, their shape is not only various but also complicated. Accordingly, their shape classification is absolutely needed for manufacturing process quality and its feedback. The performance of typical classification techniques which is principal component analysis(PCA), neural network, fusion model to integrate PCA with neural network, and support vector machine(SVM), are evaluated using pattern features of micro-cracks. As a result, it has been confirmed that the SVM gives good results in micro-crack classification.

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF

RESTful Architecture of Wireless Sensor Network for Building Management System

  • Dinh, Ngoc-Thanh;Kim, Young-Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.46-63
    • /
    • 2012
  • The concept of an "intelligent building" received significant attention from academic, industry and standard development organizations when technically termed a building management system (BMS). Wireless sensor networks (WSNs) and their recent development enhanced monitoring and control applications for the building's areas. This paper surveys and analyzes advantages of the main current and emerging approaches that may be fit for BMS. Specifically, we discuss challenges including interoperability, integration, overhead, and bandwidth limitation of WSNs in BMS. Based on analyses, we highlight the advantages of an IP-based and RESTful architecture approach as the most suitable solution for BMS using WSNs (BMS-WSN). The paper also describes our future direction and design for BMS-WSN based on these advantages. The purpose is to enable interaction of users with BMS-WSN in the same way as with any website while ensuring energy efficiency. A test-bed implementation and evaluation of a BMS application is also introduced in this paper to demonstrate the feasibility and benefits of IP-based and RESTful architecture for BMS.

Structural Vibration Control Using Semiactive Tuned Mass Damper (건물의 내진성능을 향상시키기 위한 반능동 동조질량감쇠 시스템)

  • Moon, Yeong-Jong;Ji, Han-Rok;Jung, Hyung-Jo;Lee, In-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.645-650
    • /
    • 2006
  • This paper presents the results of a study to verify the sufficient control performance of semiactive tuned mass damper and to identify suitable control methods for semiactive tuned mass damper in structural vibration control. In this study, four control algorithms are considered: on-off displacement based groundhook, on-off velocity based groundhook, clipped optimal and maximum energy dissipation algorithm. For semiactive tuned mass damper, MR damper is considered as a controllable damping device and the command voltage is calculated by the control algorithms. Each of the control theory is applied to the three story shear building excited by three earthquakes. The performance of each algorithm is compared with that of conventional tuned mass damper system using evaluation criteria. The simulation results indicate that semiactive tuned mass damper has control efficiency. Among the control algorithms, on-off displacement based control theory shows the best efficacy and robustness.

  • PDF

Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation

  • Choi, Sang In;Feng, Jia Ping;Seo, Ho Suk;Jo, Young Min;Lee, Hyun Chang
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2164-2171
    • /
    • 2018
  • Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.

Sensitivity Analysis of Heat Source Parameter for Predicting Residual Stress Induced by Electron Beam Welding (스테인리스강에 대한 전자빔 용접 잔류응력 예측을 위한 열원 변수 민감도 해석)

  • Shin Je Park;Hune Tae Kim;Yun Jae Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Accurate evaluation of residual stress is important for stress corrosion cracking assessment. In this paper, electron beam welding experiment is simulated via finite element analysis and the sensitivity of the parameters related to the combined heat source model is investigated. Predicted residual stresses arecompared with measured residual stresses. It is found that the welding efficiency affects the size of the tensile residual stress area and the magnitude of maximum longitudinal residual stress. It is also found that the parameter related to the ratio of energy distributed to the two-dimensional heat source has little effect on the size of tthe tensile residual stress area, but affects the size of the longitudinal residual stress in the center of the weld.

Techniques for Evaluation of LAMP Amplicons and their Applications in Molecular Biology

  • Esmatabadi, Mohammad javad Dehghan;Bozorgmehr, Ali;zadeh, Hesam Motaleb;Bodaghabadi, Narges;Farhangi, Baharak;Babashah, Sadegh;Sadeghizadeh, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7409-7414
    • /
    • 2015
  • Loop-mediated isothermal amplification (LAMP) developed by Notomi et al. (2000) has made it possible to amplify DNA with high specificity, efficiency and rapidity under isothermal conditions. The ultimate products of LAMP are stem-loop structures with several inverted repeats of the target sequence and cauliflower-like patterns with multiple loops shaped by annealing between every other inverted repeats of the amplified target in the similar strand. Because the amplification process in LAMP is achieved by using four to six distinct primers, it is expected to amplify the target region with high selectivity. However, evaluation of reaction accuracy or quantitative inspection make it necessary to append other procedures to scrutinize the amplified products. Hitherto, various techniques such as turbidity assessment in the reaction vessel, post-reaction agarose gel electrophoresis, use of intercalating fluorescent dyes, real-time turbidimetry, addition of cationic polymers to the reaction mixture, polyacrylamide gel-based microchambers, lateral flow dipsticks, fluorescence resonance energy transfer (FRET), enzyme-linked immunosorbent assays and nanoparticle-based colorimetric tests have been utilized for this purpose. In this paper, we reviewed the best-known techniques for evaluation of LAMP amplicons and their applications in molecular biology beside their advantages and deficiencies. Regarding the properties of each technique, the development of innovative prompt, cost-effective and precise molecular detection methods for application in the broad field of cancer research may be feasible.

A Confirmatory Factor Analysis for Quality Competitiveness Excellence Company Evaluation Indicators (품질경쟁력 우수기업 평가지표의 확인적 요인분석)

  • Park, Dong Joon;Yun, Yeboon;Yoon, Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.101-111
    • /
    • 2020
  • Companies struggle to make their best products with high quality and service at a competitive price in global markets. However, customer needs and requirements keep changing with a variety of situations. Companies that face the changes can not stay the same and make an effort to adapt themselves to new circumstances. They would probably review the overall management system that is currently implementing to improve management efficiency. Among other things, quality might be considered to be a crucial element if they are manufacturing industries to be sustained in global markets. KSA (Korean Standards Association) is a government-affiliated organization under the Ministry of Trade, Infrastructure, and Energy. It is a Korean standards provider for quality and service industry. KSA confers national commendations for organizations, quality circles, artisans, QCEC (Quality Competitive Excellent Company), and the most honorable KNQA (Korean National Quality Award) every year. KSA established KNQA on the basis of Malcom Baldrige National Quality Award, Deming Prize, and European Quality Award. Research on quality awards shows that there are many similarities in the framework. Although KSA summarizes two factors for 13 evaluation indicators in the quality competitive excellent model of QCEC, the categorization is ambiguous to explain them according to earlier studies. We performed a deep analysis of foreign quality awards and background for KNQA and QCEC. We conducted a content analysis of KNQA and QCEC and matched evaluation items that were closely related. We proposed a quality competitiveness model with three factors, Technology, System, and Tools, summarizing 13 evaluation indicators in QCEC. Based on audit data for six years from 2012 to 2017 we carried out a confirmatory factor analysis for the proposed model by examining the model validity and fitness.

How do they Make Libraries Green?: A Case Based Study on Building Green Libraries (녹색도서관 사례분석을 기반으로 한 국내 녹색도서관 구축방향에 관한 연구)

  • Ahn, In-Ja;Kwak, Chul-Wan;Noh, Young-Hee;Park, Mi-Young
    • Journal of Information Management
    • /
    • v.43 no.1
    • /
    • pp.135-158
    • /
    • 2012
  • Since the 1990s, discussions regarding green libraries started in the U.S.A, in the name of 'library and the environment', 'Green librarians', 'constructing of environmental sources', 'noise and library', 'building libraries as an environmental alternative' and etc. Currently, green libraries certified by an evaluation system are more than 50. This study proposes a direction to build a green library. The study analyzes national and international green libraries certified by the evaluation system. The cases are analyzed based on the six evaluation factors in the LEED certification system; Sustainable Site, Water Efficiency, Energy and Atmosphere, Material and Resources, Indoor Environmental Quality, Innovation and Design Process. Since the evaluation system focuses mainly on the architectural aspects, there was a need of expanding the concept of eco-friendly in this research. The newly expanded eco-friendly concept includes services, content, and supplies of libraries.