DOI QR코드

DOI QR Code

Evaluation of the cavitation effect on liquid fuel atomization by numerical simulation

  • Choi, Sang In (Department of Applied Environmental Science, Kyung Hee University) ;
  • Feng, Jia Ping (Department of Applied Environmental Science, Kyung Hee University) ;
  • Seo, Ho Suk (EG Power Tech Co., Ltd.) ;
  • Jo, Young Min (Department of Applied Environmental Science, Kyung Hee University) ;
  • Lee, Hyun Chang (Dept. of Mechanical Design, Kangwon National University)
  • Received : 2018.02.16
  • Accepted : 2018.08.16
  • Published : 2018.11.30

Abstract

Heavy duty diesel vehicles deteriorate urban air quality by discharging a large volume of air pollutants such as soot and nitrogen oxides. In this study, a newly introduced auxiliary device a fuel activation device (FAD) to improve the combustion efficiency of internal engines by utilizing the cavitation effect was closely investigated by the fluid flow mechanism via a numerical analysis method. As a result, the FAD contributed to fuel atomization from the injection nozzle at lower inlet pressure by reducing the pressure energy. The improved cavitation effect facilitated fuel atomization, and ultimately reduced pollutant emission due to the decrease in fuel consumption. The axial velocity along the flow channel was increased 8.7 times with the aid of FAD, which improved the primary break-up of bubbles. The FAD cavitation effect produced 1.09-times larger turbulent bubbles under the same pressure and fuel injection amount than without FAD.

Keywords

Acknowledgement

Supported by : Korea Small and Medium Business Administration, Kangwon National University

References

  1. H. K. Suh and C. S. Lee, Renew. Sust. Energy Rev., 58, 1601 (2016). https://doi.org/10.1016/j.rser.2015.12.329
  2. H. J. Kim, MA dissertation, Kyung Hee University, Korea (1997).
  3. IARC, Diesel Engine Exhaust Carcinogenic, International Agency f Research on Cancer (2012).
  4. S. I. Choi, J. P. Feng, H. S. Seo, S. B. Kim and Y. M. Jo, J. Korean Soc. Atmos. Environ., 33(4), 306 (2017). https://doi.org/10.5572/KOSAE.2017.33.4.306
  5. Y. S. Lee, MA dissertation, Kyung Hee University, Korea (2006).
  6. D. S. Park, T. J. Lee, Y. I. Lee, W. S. Jeong, S. B. Kwon, D. S. Kim and K. Y. Lee, Sci. Total Environ., 575, 97 (2017). https://doi.org/10.1016/j.scitotenv.2016.09.235
  7. S. Ghods, Arizona State University, ProQuest Dissertations Publishing, 3567676 (2013).
  8. Z. He, X. Tao, W. Zhong, X. Leng, Q. Wang and P. Zhao, Int. Communications in Heat and Mass Transfer, 65, 117 (2015). https://doi.org/10.1016/j.icheatmasstransfer.2015.04.009
  9. B. Yin, S. Yu, H. Jia and J. Yu, Int. J. Heat Fluid Flow, 59, 1 (2016). https://doi.org/10.1016/j.ijheatfluidflow.2016.01.005
  10. R. Payri, F. J. Salvador, J. Gimeno and O. Venegas, Exp. Therm. Fluid Sci., 44, 235 (2013). https://doi.org/10.1016/j.expthermflusci.2012.06.013
  11. C. P. Egerer, H. Stefan, J. S. Steffen and A. A. Nikolaus, Phys. Fluids, 26, 085102 (2014). https://doi.org/10.1063/1.4891325
  12. A. Sou, B. Bicer and A. Tomiyama, Comput. Fluids, 103, 42 (2014). https://doi.org/10.1016/j.compfluid.2014.07.011
  13. S. Yu, B. Yin, H. Jia, S. Wen, X. Li and J. Yu, Fuel, 208, 20 (2017). https://doi.org/10.1016/j.fuel.2017.06.136
  14. S. V. Apte, M. Gorokhovski and P. Moin, Int. J. Multiphase Flow, 29, 1503 (2003). https://doi.org/10.1016/S0301-9322(03)00111-3
  15. W. Yuan, J. Sauer and G. H. Schnerr, Mec. Ind., 2(5), 383 (2001). https://doi.org/10.1016/S1296-2139(01)01120-4
  16. Z. He, C. Yuhang, L. Xianyin, W. Qian and G. Genmiao, Int. Communications in Heat and Mass Transfer, 76, 108 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.05.033
  17. S. K. Park, S. C. Woo, H. G. Kim and K. Y. Lee, Appl. Energy, 176, 209 (2016). https://doi.org/10.1016/j.apenergy.2016.05.069
  18. F. J. Salvadora, J. V. Romero, M. D. Rosello and D. Jaramillo, J. Comput. Appl. Mathematics, 291, 94 (2016). https://doi.org/10.1016/j.cam.2015.03.044
  19. B. Mohan, W. Yang and S. K. Chou, Energy Convers. Manage., 77, 269 (2014). https://doi.org/10.1016/j.enconman.2013.09.035
  20. M. Ghiji, L. Goldsworthy, P. A. Brandner, V. Garaniya and P. Hield, Fuel, 175, 274 (2016). https://doi.org/10.1016/j.fuel.2016.02.040
  21. A. Sou, S. Hosokawa and A. Tomiyama, Int. J. Heat and Mass Transfer, 50, 3575 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.033
  22. R. Pyszczek, L. J. Kapusta and A. Teodorczyk, J. Power Technol., 97(1), 52 (2017).
  23. Z. He, Z. Shao, Q. Wang, W. Zhong and X. Tao, Exp. Therm. Fluid Sci., 60, 252 (2015). https://doi.org/10.1016/j.expthermflusci.2014.09.015
  24. A. H. Lefebvre, Taylor & Francis, New York (1989).
  25. C. Baumgarten, J. Stegemann and G. P. Marker, Proc. of 18th ILASS Europe Conference, Zaragoza, Spain, 15 (2002).
  26. F. Payri, R. Payri, F. J. Salvador and J. Martinez-Lopez, Comput. Fluids, 58, 88 (2012). https://doi.org/10.1016/j.compfluid.2012.01.005
  27. W. Bergwerk, Proc. Institute of Mechanical Engineers, 173(25), 655 (1959). https://doi.org/10.1243/PIME_PROC_1959_173_054_02
  28. C. Soteriou, R. Andrews and M. Smith, SAE Paper, Paper No. 950080 (1995).
  29. W. H. Nurick, Trans. ASME, 98(4), 681 (1976).
  30. F. Payri, V. Bermudez, R. Payri and F. J. Salvador, Fuel, 83, 419 (2004). https://doi.org/10.1016/j.fuel.2003.09.010
  31. H. Hiroyasu, M. Arai and M. Shimizu, Proceedings of International Conference on Liquid Atomization and Spray Systems, 91(ICLASS 91), 275 (1991).
  32. T. Qiu, X. Song, Y. Lei, X. Liu, X. An and M. Lai, Appl. Therm. Eng., 109, 364 (2016). https://doi.org/10.1016/j.applthermaleng.2016.08.046
  33. A. Zhandi, S. Sohrabi and M. Shams, Int. J. Automotive Eng., 5, 940 (2015).
  34. S. Som, S. K. Aggarwal, E. M. El-Hannouny and D. E. Longman, J. Eng. Gas Turbines Power, 132(4), 042802 (2010). https://doi.org/10.1115/1.3203146
  35. S. Molina, F. J. Salvador, M. Carreres and D. Jaramillo, Energy Convers. Manage., 79, 114 (2014). https://doi.org/10.1016/j.enconman.2013.12.015
  36. Z. Y. Sun, G. X. Li, C. Chen, Y. S. Yu and G. X. Gao, Energy Convers. Manage., 89, 843 (2015). https://doi.org/10.1016/j.enconman.2014.10.047
  37. F. Wang, Z. He, J. Liu and Q. Wang, Int. J. Automotive Technol., 16(4), 539 (2015). https://doi.org/10.1007/s12239-015-0055-9
  38. M. Gavaises, A. Andriotis, D. Papoulias and A. Theodorakakos, Phys. Fluids, 21, 052107 (2017).
  39. J. P. Feng, S. I. Choi, H. S. Seo and Y. M. Jo, Korean J. Chem. Eng. (2018), DOI:10.1007/s11814-018-0106-9.