• Title/Summary/Keyword: Energy cost reduction

Search Result 639, Processing Time 0.031 seconds

Development of an Environmental Friendly Hybrid Power System and its Application to Agricultural Machines (친환경 하이브리드 동력 시스템 개발 및 농기계 응용)

  • Kim, Sangcheol;Hong, Youngki;Kim, Gookhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.447-452
    • /
    • 2015
  • A hybrid power system was developed for agricultural machines with a 20kW output capacity, and it was attached to a multi-purpose cultivator to improve the performance of the cultivator. The hybrid system combined heterogeneous sources: an internal-combustion engine and an electric power motor. In addition, a power splitter was developed to simplify the power transmission structure. The cultivator using a hybrid system was designed to have increased fuel efficiency and output power and reduced exhaust gas emissions, while maintaining the functions of existing cultivators. The fuel consumption for driving the cultivator in the hybrid engine vehicle (HEV) mode was 341g/kWh, which was 36% less than the consumption in the engine (ENG) mode for the same load. The maximum power take off output of the hybrid power system was 12.7kW, which was 38% more than the output of the internal-combustion engine. In the HEV mode, harmful exhaust gas emissions were reduced; i.e., CO emissions were reduced by 36~41% and NOx emissions were reduced by 27~51% compared to the corresponding emissions in the ENG mode. The hybrid power system improved the fuel efficiency and reduced exhaust gas emissions in agricultural machinery. The hybrid system's lower exhaust gas emissions have considerable advantages in closed work environments such as crop production facilities. Therefore, agricultural machinery with less exhaust gas emissions should be commercialized.

Effect of Carbon dioxide in Fuel on the Performance of PEM Fuel Cell (연료중의 이산화탄소 불순물에 의한 연료전지 성능변화 연구)

  • Seo, Jung-Geun;Kwon, Jung-Taek;Kim, Jun-Bom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.184-187
    • /
    • 2007
  • Hydrogen could be produced from any substance containing hydrogen atoms, such as water, hydrocarbon (HC) fuels, acids or bases. Hydrocarbon fuels couold be converted to hydrogen-rich gas through reforming process for hydrogen production. Even though fuel cell have high efficiency with pure hydrogen from gas tank, it is more beneficial to generate hydrogen from city gas (mainly methane) in residential application such as domestic or office environments. Thus hydrogen is generated by reforming process using hydrocarbon. Unfortunately, the reforming process for hydrogen production is accompanied with unavoidable impurities. Impurities such as CO, $CO_2$, $H_2S$, $NH_3$, and $CH_4$ in hydrogen could cause negative effects on fuel cell performance. Those effects are kinetic losses due to poisoning of electrode catalysts, ohmic losses due to proton conductivity reduction including membrane and catalyst ionomer layers, and mass transport losses due to degrading catalyst layer structure and hydrophobic property. Hydrogen produced from reformer eventually contains around 73% of $H_2$, 20% or less of $CO_2$, 5.8% of less of $N_2$, or 2% less of $CH_4$, and 10ppm or less of CO. Most impurities are removed using pressure swing adsorption (PSA) process to get high purity hydrogen. However, high purity hydrogen production requires high operation cost of reforming process. The effect of carbon dioxide on fuel cell performance was investigated in this experiment. The performance of PEM fuel cell was investigated using current vs. potential experiment, long run (10 hr) test, and electrochemical impedance measurement when the concentrations of carbon dioxide were 10%, 20% and 30%. Also, the concentration of impurity supplied to the fuel cell was verified by gas chromatography (GC).

  • PDF

A Study on the Charge Controller for Solar Street Lamp by Direct Duty Ratio Control (다이렉트 듀티비 제어에 의한 태양광 가로등용 충전제어기에 관한 연구)

  • Jang, Han-Gi;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • According to the recent report, solar street lamp connected to a non Maximum Power Point Tracking(MPPT) charger, can lead to a system-wide decline in power output with as much as 30%. This paper proposes the charge controller with direct duty ration control for 250W solar street lamp in order to improve the efficiency of photovoltaic from these output power reduction. This paper covers the Pulse Width Modulation(PWM) controller and power conversion topology and analyze the MPPT method for charge controller. The power conversion part consists of push pull converter based on PWM controller using 8bit MCU in order to have lower manufacturing cost. The PWM controller with direct duty ratio control algorithm is constantly tracking the maximum power point of photovoltaic module and increases energy output power. The test results shows 97.1~97.4% MPPT efficiency and the experimental hardware is implemented based on the solar simulator condition for 241W. Thus, the implemented charge controller shows its feasibility for the real application, especially under solar street lamp.

Practical Challenges Associated with Catalyst Development for the Commercialization of Li-air Batteries

  • Park, Myounggu;Kim, Ka Young;Seo, Hyeryun;Cheon, Young Eun;Koh, Jae Hyun;Sun, Heeyoung;Kim, Tae Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • Li-air cell is an exotic type of energy storage and conversion device considered to be half battery and half fuel cell. Its successful commercialization highly depends on the timely development of key components. Among these key components, the catalyst (i.e., the core portion of the air electrode) is of critical importance and of the upmost priority. Indeed, it is expected that these catalysts will have a direct and dramatic impact on the Li-air cell's performance by reducing overpotentials, as well as by enhancing the overall capacity and cycle life of Li-air cells. Unfortunately, the technological advancement related to catalysts is sluggish at present. Based on the insights gained from this review, this sluggishness is due to challenges in both the commercialization of the catalyst, and the fundamental studies pertaining to its development. Challenges in the commercialization of the catalyst can be summarized as 1) the identification of superior materials for Li-air cell catalysts, 2) the development of fundamental, material-based assessments for potential catalyst materials, 3) the achievement of a reduction in both cost and time concerning the design of the Li-air cell catalysts. As for the challenges concerning the fundamental studies of Li-air cell catalysts, they are 1) the development of experimental techniques for determining both the nano and micro structure of catalysts, 2) the attainment of both repeatable and verifiable experimental characteristics of catalyst degradation, 3) the development of the predictive capability pertaining to the performance of the catalyst using fundamental material properties. Therefore, under the current circumstances, it is going to be an extremely daunting task to develop appropriate catalysts for the commercialization of Li-air batteries; at least within the foreseeable future. Regardless, nano materials are expected to play a crucial role in this field.

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Development of Novel Pyrrolidine Organocatalyst

  • Im, Seol-Hui;Gang, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.198-198
    • /
    • 2011
  • Organocatalysis is a relatively new and popular area within the field of chiral molecule synthesis. It is one of the main branches of enantioselective synthesis with enzymatic and organometallic catalysis. In recent years, immense high quality studies on catalysis by chiral secondary amines were reported. These progresses instantly led to different organocatalytic activation concepts, so thousands of researchers from academia and the chemical industry are currently involved in this field and new ideas, new approaches, and creative thinking have been rapidly emerged. Organocatalysts, some of which are natural products, appear to solve the problems of metal catalysts. Compared to metal-based catalysis, they have many advantages including savings in cost, time, and energy, easier experimental procedure, and reduction of chemical waste. These benefits originate from the following factors. First, organocatalysts are generally stable in oxygen and water in the atmosphere, there is no need for special equipments or experimental techniques to operate under anhydrous or anaerobic conditions. Second, organic reagents are naturally available from biological materials as single enantiomers that they are easy and cheap to prepare which makes them suitable for small-scale to industrial-scale reactions. Third, in terms of safety related catalysis, small organic molecules are non-toxic and environmentally friendly. Therefore, the purpose of this research is to develop novel synthetic methods and design for various organocatalyst. Furthermore, it is expected that these organocatalysts can be applied to a variety of asymmetric reactions and study the transition state of these reactions using a metal sulface. Here, we report the synthesis of unprecedented organocatalysts, proline and pyrrolidine derivatives with quaternary carbon center.

  • PDF

Mission Trajectory Design using Three-Body Dynamics (3체 역학 방정식을 이용한 위성 임무 궤도 설계)

  • Chung, Tae-Jin;Lee, Na-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.50-56
    • /
    • 2010
  • Most mission trajectory design technologies for space exploration have been utilized the Patched Conic Approximation which is based on Hohmann transfer in two-body problem. The Hohmann transfer trajectory is basically an elliptic trajectory, and Patched Conic Approximation consists of Hohmann transfer trajectories in which each trajectory are patched to the next one. This technology is the most efficient method when considering only one major planet at each patch trajectory design. The disadvantages of the conventional Patched Conic Approach are more fuel (or mass) needed and only conic trajectories are designed. Recent space exploration missions need to satisfy more various scientific or engineering goals, and mission utilizing smaller satellites are needed for cost reduction. The geometrical characteristics of three-body dynamics could change the paradigm of the conventional solar system. In this theoretical concept, one can design a trajectory connecting around the solar system with comparably very small energy. In this paper, the basic three-body dynamics are introduced and a spacecraft mission trajectory is designed utilizing the three-body dynamics.

The Implementation of Sustainable Manufacturing Practice in Textile Industry: An Indonesian Perspective

  • MUHARDI, Muhardi;CINTYAWATI, Cici;ADWIYAH, Rabiatul;HAMI, Norsiah;HASHIM, Rushanim;OMAR, Salmah;SHAFIE, Shafini Mohd
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.1041-1047
    • /
    • 2020
  • The intention of this paper is to give a better understanding about the implementation of sustainable manufacturing practice in the textile companies in Indonesia as one of the promising sectors in the manufacturing industry. The data was collected by taking a case study approach in one of the leading textile companies in Indonesia. Questionnaire and interview techniques were used to gather in-depth information about the implementation of a sustainable concept in the company. The result reveals that the extent of the implementation of Sustainable Manufacturing Practices (SMP) in the companies are at a level of moderate to high. From the three dimensions measured which are environment, economy, and social dimensions, the evaluation result shows good performance in terms of the implementation of sustainable concepts, like low level of gas emission, high percentage of renewable energy usage, cost reduction rate, high quality of life, etc. From this result, the authors then develop a sustainable manufacturing model in the wider coverage to be implemented not only in the textile industry but is expected to be implemented in manufacturing sectors as well. This model consists of at least seven basic archetypes which are divided into three dominant areas: technological innovation, economical, and social areas which aim to bring better performance in the manufacturing industry of Indonesia.

A New Image Completion Method Using Hierarchical Priority Belief Propagation Algorithm (계층적 우선순위 BP 알고리즘을 이용한 새로운 영상 완성 기법)

  • Kim, Moo-Sung;Kang, Hang-Bong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • The purpose of this study is to present a new energy minimization method for image completion with hierarchical approach. The goal of image completion is to fill in missing part in a possibly large region of an image so that a visually plausible outcome is obtained. An exemplar-based Markov Random Field Modeling(MRF) is proposed in this paper. This model can deal with following problems; detection of global features, flexibility on environmental changes, reduction of computational cost, and generic extension to other related domains such as image inpainting. We use the Priority Belief Propagation(Priority-BP) which is a kind of Belief propagation(BP) algorithms for the optimization of MRF. We propose the hierarchical Priority-BP that reduces the number of nodes in MRF and to apply hierarchical propagation of messages for image completion. We show that our approach which uses hierarchical Priority-BP algorithm in image completion works well on a number of examples.

Finding Industries for Big Data Usage on the Basis of AHP (AHP 기반의 빅데이터 활용을 위한 산업 탐색)

  • Lee, Sang-Won;Kim, Sung-Hyun
    • Journal of Digital Convergence
    • /
    • v.14 no.7
    • /
    • pp.21-27
    • /
    • 2016
  • Big Data is gathering all the attention from every business community. Pervasive use of machine-to-machine (M2M) applications and mobile devices bring an explosion of data. By analyzing this data, the private and public sectors can benefit in the areas of cost reduction and productivity. The Korean government is actively pursuing Big Data initiatives to promote its usage. This paper aims to select industries which fit for the development of Big Data with a verification of the experts. The analytic hierarchy process (AHP) is applied to systematically derive the opinion of more than 50 professionals. Medical / welfare, transportation / warehousing, information and communications / information security, energy, the financial sector have been identified as promising industries. The results can be utilized in developing Big Data best practices thus contributing industrial development.