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Mission Trajectory Design using Three-Body Dynamics
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ABSTRACT

Most mission trajectory design technologies for space exploration have been utilized the Patched Conic
Approximation which is based on Hohmann transfer in two-body problem. The Hohmann transfer trajectory is
basically an elliptic trajectory, and Patched Conic Approximation consists of Hohmann transfer trajectories in
which each trajectory are patched to the next one. This technology is the most efficient method when considering
only one major planet at each patch trajectory design. The disadvantages of the conventional Patched Conic
Approach are more fuel (or mass) needed and only conic trajectories are designed.

Recent space exploration missions need to satisfy more various scientific or engineering goals, and mission
utilizing smaller satellites are needed for cost reduction. The geometrical characteristics of three-body dynamics
could change the paradigm of the conventional solar system. In this theoretical concept, one can design a
trajectory connecting around the solar system with comparably very small energy. In this paper, the basic

three-body dynamics are introduced and a spacecraft mission trajectory is designed utilizing the three-body
dynamics.

advantage and disadvantage are the short transfer

1. Introduction time and high fuel cost, since it is based on the two
body dynamics, a celestial body and a spacecraft.
Recently, the spacecraft trajectory to the Moon When considering another celestial body, the
has become a topic of Increasing attention. The problem becomes three body problem, two celestial
conventional patched conic method has been used by bodies and one spacecraft. This concept can change
many missions, including the Apollo program. Its the paradigm of the conventional solar system[2].
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The left is the conventional solar system and the
right is the new paradigm utilizing the three body
dynamics. Conceptually, trajectories connecting all the
celestial bodies in solar system can be found with small
energy. When applying this three body dynamic
characteristics, one can design a spacecraft trajectories
with very small energy. Japanese spacecraft HITEN
could reach to the Moon with 10% of designed
propellant, when its normal operation disabled by
malfunction. USA’s spacecraft GENISIS could reach to
its mission orbit with only one orbit insertion and
return to the Earth. These conventionally impractical
(or impossible) orbits are only possible in multi-body
dynamics. Cost efficiency obtained by three body
dynamics can extend applications of small satellites like
STSAT series to the interplanetary mission. In this
paper, simple three body dynamics and useful
characteristics such as libration points, periodic orbits,
and stable/unstable manifolds are introduced, and a
Earth to Moon transfer orbit is designed based on these

dynamics characteristics.

II. Circular Restricted Three Body Problem -
CRTBP

1. Problem Description

Consider the motion of a particle of negligible
mass moving under the gravitational influences of
two masses  and
that and

center of mass. The particle

as the primary masses. Assume
have circular orbits about their common
is free to move the
space defined by the circular orbits of the primary
masses, but cannot affect their motion.

The coordinate of the CRTBP is centered at the
barycenter of the primaries and set to rotate with
the motion of the primaries about the origin. When
viewed from +2 axis, the synodic frame rotates in a
counter—clockwise compared to the inertial frame.
The ¥ axis extends from the origin through the ™2,

the # axis extends in the direction of the angular

momentum of the system, and Y axis completes the
right-hand coordinate frame. When dealing with
CRTBP, the useful convention is to applying unit

normalization as following.

Distance : da =Ld
Time : ta=T/(2m)s
Velocity : sa=1Vs

Where L (in km) is distance between "1 and M2,
T (in seconds) is orbital period of M1 and M2 and V'
(in km/s) is orbital velocity of 1. Then the only
parameter of the system is the mass parameter.

_ mao
m= my + ma (1)

Table 1 provides a table of mass parameters and
dimensional values for Sun/Earth and Earth/Moon

system.

Table 1 Parameters of Sun/Earth & Earth/Moon systems

System 1z Lkm |V ks | T (s
Sun/Earth 3.036E-6 | 1.496E8 20.784 3.147E7
Earth/Moon | 1.215E-2 | 3.850E5 1.025 2.361E6

2. Equation of Motion

The gravitational potential which the particle

experiences due to M1 and ™2 is

prope 1
U Y, R)=——— —— 35
(2,y,2) r1 ) QMNQ 2)
where
rio= (@t+m)’+y’+2
r3 = (x—p)’+y*+7°
and
pr = l—up
p2 = p

Then, Euler-Lagrange equations is given by

(d/dt)(i—y) = G4+x-Us
(d/dt)(g+x) = —(t—y)-Uy
(d/dt)(z) = -U. 3

After simplification, we have

o1
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F-2 = U,
j4+28 = —U,

where the effective potential is

1
Ulx,y,2) = —5(3”2 +y") +U(x,y, 2) 5)

and Ui denotes (9/01)U. Since the Lagrangian
system can be transformed to Hamiltonian form,
there is energy integral of motion and it is a

function of positions and velocities.

Lo 1. . . =
E(%Z/Jﬁ&@/ﬂ):5($2+92+22)+U(l’7%z) 6)

This energy integral defines energy surface and
Hill's region, where the velocity becomes zero on

the boundary of this region.
A/[(:uae) = {(xvyvzvi.vyaZ.)|E(xvyvzv-ftayvz.) - 6} (7)
Mi(e,y.2) = {(@ Ty <e @

Therefore, the motion of particle is only possible
in the side of region for which kinetic energy is
positive. Also, note that there is five peak points in
, and each point only can be reachable by
appropriate energy level,. These five points are
known as Libration or Equilibrium points of CRTBP,
and plays very important roles in analyzing and
designing the particle’s motion (in other word,

trajectory)

3. Libration Points and Geometry of Solutions

The equilibrium points (L1i,L2,L3,L4,Ls) of the
CRTBP can be found by solving

(0/02)U = (9/0y)U = (9/02)U =0 9

The behavior of particle trajectories near the two
collinear libration points (L1, L2) can be analyzed by
linear approximation near the point, since there is no
known closed—form analytical solution. These linear
approximation analysis reveals that the libration
points act as (saddle)x(center)x(center), and there is
families of periodic orbits, such as Lyapunov orbits,

Halo orbits, and Lissajous orbits. In PCTBP, particle
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trajectories utilize Halo or Lissajous orbits for its
own mission orbit or for transfer orbits to reach to
mission orbits. These transfer dynamics is provided
by the local stabilities near the periodic orbits.
Linearized analysis near the particular points of
the periodic orbits shows that the stat transition
stable unstable

matrices have eigenvalue and

eigenvalue, and the corresponding -eigenvectors
indicate that the direction of stable flow and
unstable flow in the nonlinear CRTBP. The set of
these flows are called manifolds (stable manifolds
and unstable manifolds). Therefore, a small
perturbation of the periodic orbits can make the
flows in-going and out—going trajectories from the

periodic orbits.

4. Periodic Orbits and Manfolds

It is critical to find a suitable periodic orbit for
trajectory design. One of the
Richardson’s Third order

and Differential

the particle’s
approaches are
Approximation Correction. The
linearized form of the equations s.t the origin is

located at one of the collinear libration points

=20 —(14c)zx =
j2i+(c2-1)y =

Z4+cz = 0 (10)
And its solutions are
x = —A;cos(At+ ¢)
y = kAgsin(At+ ¢)
z = Ascos(At+1) an

A. Az Kk and A can be calculated following
procedure in [4]. Now, set the initial conditions for

halo orbits s.t.

Xo,Linear = [IL —A:,0,4.,0, /\kADCvO] (12

Then, we can find a initial point of the desired
periodic orbit. Let Xo is a point on a halo orbit
intersecting X7 plane. Since a halo orbit in CR3BP is
symmetric with respect to the XZ plane, when
integrating the Xo until the trajectory intersecting XZ

plane, X(T/2) shall also be in the form of
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- T y
X(i) = [.T,O,Za0>y70} 13)

However, integrating with the initial condition,
Xo,Linear, will not produce X(T/2) in the above form
because it is not a solution of nonlinear CR3BP
problem. Therefore, Xo0,Linear shall be adjusted using
Differential Correction Algorithm. In Differential
Correction Algorithm, the transition matrix at (T/ 2)

can be used to adjust the initial value s.t.
T T
X(=)=d( = X
X(3) <2’0>5 ) (14)

and ®(T/2,0) can be computed by the following

equation.

®(t,to) = Df(x)®(t,t0) (15)

where, Df () is the Jacobian Matrix. By repeating
this procedure until |#] < € and |#] <€ we can find
initial value for the halo orbit.

The stable and unstable manifolds are represented
by trajectories leading forward or away from the
fixed point.

A particular point on the periodic orbit defines the
beginning and end of the orbit period. So, this point
can be a fixed point. By linearizing about this fixed
point, we can find eigenvalues and corresponding
eigenvectors. The eigenvectors corresponding to the
stable eignevalue approximates stable manifolds and
eigenvectors corresponding the unstable eigenvalue
approximates unstable manifolds. The particular state
transition matrix describing the state change for one
period () of the orbit is used to calculate these
eigen vectors.

Let's say Y?® and Y" denote stable and unstable
eigenvectors, respectively. Then initial guess of

stable and unstable manifolds at the fixed point is

X§ = X*+4dv®
X¢ = X'4dv* 16)

where d is small displacement.

5. Trajectories Patch

The final mission orbits can be obtained by
patching the end and start points of trajectories in
stable/unstable  manifolds. Flows in  unstable
manifolds go out from the periodic orbit and flows in
stable manifolds go in to the periodic orbit. If there
exist any intersection between these manifolds, a
particle can move from a periodic orbit to another.
These intersections can be found by Poincare

section or Differential Correction algorithm.

II. Earth to Moon Mission Trajectory Design

1. Problem Structure

The design of Earth to Moon trajectory considers
the systems in Figure 1. Actually this system is a
four body system, but as described in Section 2.5,
we will utilizing trajectory patching techniques

between Sun/Earth system and Earth/Moon system.

L2

3."’\/\‘7‘ L 1

4
iJ’VV ‘f‘r(

Figure 1. Sun/Earth and Earth/Moon Systems

Earth parking orbit is assumed to have 300km
altitude and the desired transfer trajectory is near
the Moon with arbitrary distance since the mission
orbit can be changed depending on a particular
mission. In the CRTBP, the transfer orbit can be
designed utilizing Sun/Earth L2 halo orbits and
Earth/Moon L2 halo orbits.

2. Sun/Earth Halo Orbit and Its Manfolds

Sun/Earth L2 halo orbit is designed following
procedures in Section 2.4. After
A. =440,000(km), the initial guess of the halo orbit

1s

setting

x0,guess = (1.00705,0.0,0.00335, 0.0, 0.01409, 0.0)

Differential Correction with Z0,guess calculates the

initial point of the halo orbit as shown in Figure 2.
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Figure 2a. Sun/Earth L2 Halo Orbit (2-dimensional view)

2, non-dimengional

o
=

1.015

0o0s 1,005

¥, hon-dimensional 001 pogs
d ¥, han-dimensional

Figure 2b. Sun/Earth L2 Halo Orbit (3-dimensional view)

In Figure 2, * and O is the position of Earth and
Lo and the blue

boundary of Hill's region. Flows near this halo orbit

line (upper & lower) is the
defines manifolds, which are stable and unstable.

If a spacecraft is on the stable manifold, it will
move into the halo orbit. If a spacecraft is on the
unstable manifold, it will move out from the halo
orbit. Therefore, it is necessary to find a stable
manifold to escape the Earth parking orbit. Figure 3
shows stable and unstable manifolds on the halo
orbit. Note that the stable manifold can reach to the
near region of the Earth and, if a manifold reaches
to the Earth parking orbit, the spacecraft can escape
the Earth parking orbit by changing its velocity (or
by changing its energy level), called a AV, Usually

the Earth escaping is provided by a launch vehicle.
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Figure 3a. Stable and Unstable Manifolds of Sun/Earth L2
Halo Orbit (2-dimensional view)
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Figure 3b. Stable and Unstable Manifolds of Sun/Earth L2

Halo Orbit (3-dimensional view)

The Earth escaping point of the stable manifolds
can be found by looking at the manifold’s cross
section, called Poincare Section, on the x-z plane.
Figure 4 shows this cross section. The left is the
section of unstable manifold and the right is of
stable manifold. The center line is the position of
the Earth.
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Figure 4. Poincare Section on X-Z Plane (center line:
position of the Earth, =*
unstable manfolds in of Sun/Earth system, o :

of stable manfold of Earth/Moon system)

cross sections of stable and
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If an initial point is selected on the * line of left
side and integrated forward, the trajectory will
converge onto the halo orbit. If selected on the *
line of rigth side and integrated backward, its
trajectory will also converged onto the halo orbit.
The other regions defines points for transit and
non-transit trajectories. So, by properly selecting an
initial point, we can find out a Earth escaping
trajectory which starts near the Earth parking orbit,
flows into the halo orbit, and goes out from the halo
orbit. The bold line in Figure 5 shows the Earth
escaping trajectory with the initial point selected
using the Poincare section in Figure 4.

The next step is to find a trajectory whose initial
point is the same as the final point or near the final

final point of this Earth escaping traejectory.
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Figure 5. Earth Escapting Trajectory

3. Earth/Moon Halo Orbit and Its Manfolds

Earth/Moon L2 orbit and its manifolds can be

calculated Figure 6 shows the
Earth/Moon L2 halo orbit and its stable manifolds in
Earth/Moon stable

manifold will converge on the the Earth/Moon halo

similar  way.

system. Any point on this

orbit. So, the problem is to find a point on this
manifold, which is connected to the Earth escaping
trajectory, and can be found by Poincare section in
Figure 4. The =* section is for stable/unstable
manifold in Sun/Earth system. When we transform
Earth/Moon trajectory to the same one expressed in
Sun/Earth system and calculate the same cross
section, we can see if there is common regions,
which eventually connect two trajectories. In Figure
4, o line is the cross section of stable manfold of
Earth/Moon halo orbit in Sun/Earth system. There
exist certainly comman region and we will select a

point in this region to go to the Moon.
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Figure 6. Stable Manfold in Earth/Moon System

4. Earth to Moon Trajectory

The remaining calculation of the trajectory design
is to find a patch point between two trajectories.
This calculation is to select a point in cross section
in Sun/Earth xy plane, which satisfies the Earth
parking and Moon reaching requirement. Usually this
calculation is performed by iterating procedures.

Figure 7 shows the result. The Sun/Earth and
Earth/Moon systems are expressed together in this
Figure and the Earth/Moon system is rotating the
Earth. The trajectory (sold line) which starts from
the FEarth parking orbit can reach onto the
Earth/Moon L2 halo orbit. At the patching point, we
needed small AV (about 22m/s).
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Figure 7. Trajectory from Earth Parking to Moon's L2 Halo

Orbit

The bold line in Figure 8 shows the same
trajectory. It shows that the trajectory converges
onto the Earth/Moon L2 halo orbit. The final step is
to find a small deviation from the halo orbit to reach

to the Moon. This will be done with similar way

95



TR AT B = 1A A5 A2E

(using unsable manifold) as described above and we
can find lots of trajectories which reach to the Moon
region with very wide range of application choices.
We can impact on the Moon or we can reach to the
Moon's circular orbit, elliptic orbit, etc. The red
lines in Figure 8 are some of the trajectories we
can obtain from Earth/Moon L2 halo orbit.
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Figure 8. Trajectories reaching to the Moon

II. Conclusions

three body

dynamics was introduced for further complicated

In this paper, characteristics of

orbit design. Periodic orbit about libration points and
stable/unstable manifolds could provide useful tools
in cost efficient transfer trajectory design. In the
designing Earth to Moon trasnfer, the energy change
was required in two points and their magnitudes are
very small (Note that these energy changes were
used as small perturbation in CRTBP). As a result,
we conclude that the CRTBP apporach can improve
the applications of cost limited spacecraft program to

interplanetary missions.
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