• Title/Summary/Keyword: Energy and Transportation Technology

Search Result 484, Processing Time 0.027 seconds

Reduction of Green House Gases by Bioenergy Supplying in Korea (국내 바이오에너지 보급에 따른 온실가스 저감 평가)

  • Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, the development of renewable energy sources in Korea has been needed due to climate change. One of powerful alternative energy resources to mitigate emission is to switch conventional fuels to renewable energy, such as bioenergy. In this study, current status of bioenergy conversion technology and its supply in Korea was investigate. Based on theoretical, technical and realizable potential of biomass in Korea, the amount of reduction of green house gases was estimated. The results shown that the contribution of biomass on 2020 reduction target of green house gases emission in power generation was $513,000\;tCO_2/yr$ and utilization ratio of technical potential of biomass was 6.4%. For the effective supply of bioenergy in Korea, more exact estimation of realizable potential of biomass in Korea and stable supply sources are needed.

A Study on Characteristics of Power Generation System Using Biogas from the Waste of Pig Farm

  • Huynh, Thanh-Cong;Pham, Xuan-Mai;Nguyen, Dinh-Hung;Tran, Minh-Tien
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.5
    • /
    • pp.435-441
    • /
    • 2010
  • To verify the possibility of a power generation system using biogas from the waste of pig farm for rural electric production, a SI gasoline engine is modified to use biogas fuel and was installed in a 20 KVA power generation system. An electronic speed regulation unit is developed to keep the system speed at 1500 rpm. Experimental investigations have been carried out to examine the performance characteristics of power generation system (such as: system frequency, phase output voltage,$\ldots$). In addition, the operating parameters and output emissions ($NO_x$, HC, and $CO_2$) of biogas-fueled engine are preliminary evaluated and analyzed for the change of system load. Results indicated that the researched power generation system shows a high stability of output voltage and frequency with help of speed regulator. Biogas fuel (mainly $CH_4$ and $CO_2$) has an environmental impact and potential as a green alternative fuel for SI engine and they would not require significant modification of existing engine hardware. Output emissions of biogas-fueled engine are found to be relative low. $NO_x$ emission increases with the increase of output electric power of the power generation system.

Measurement and Analysis of Ride Quality according to Driving Type in Urban Railway (도시철도 운전방식에 따른 승차감 측정 및 분석)

  • Ryu, Onesik;Choi, Kyuhyoung;Park, Choonsoo;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.68-72
    • /
    • 2015
  • The railway system has been recognized as one of the best eco-friendly advanced transportation systems. Furthermore, the improvement of the passenger transportation quality and the energy saving have been studied for being the most competitive transportation system. However, most of the studies have been mainly focused on the improvement of the transportation efficiency and energy saving because of the characteristics of the urban railway which serves the unspecified multiple passengers. In this paper, the 3-dimensional vibratory lateral acceleration has been measured in various environments for the automatic and manual operation modes of the general train and express train in the urban railway lines. In terms of the improvement of the passenger transportation quality, the comparison analysis of the ride quality is carried out based on the measured 3-dimensional vibratory lateral acceleration and the statistical techniques of UIC513R suggested by the International Union of Railways.

Vibration Reduction of Cantilever using Passive Piezoelectric Shunt (수동형 압전션트를 이용한 외팔보의 진동저감 연구)

  • Yun, Yangsoo;Kim, Jaechul;Noh, Heemin
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • Piezoelectric shunt is an electric type damper capable of reducing the vibration of the structure. Vibration generated at the natural frequency of the structure are converted into electrical energy through the piezoelectric material attached to the structure. Electric energy can be dissipated by thermal energy using piezoelectric shunt composed of inductor and resistance to reduce vibration. In this paper, the equation for the optimum inductance required to reduce the vibration of the cantilever beam was examined and the vibration of the aluminum cantilever was reduced by using finite element analysis and experiments. In the finite element analysis, the mode shape and the strain energy distribution were calculated to examine the mounting position, and the vibration reduction of the cantilever was calculated by adjusting the inductance and resistance circuit values. In addition, in the experiment, a variable inductor module was used to reduce the vibration occurring at a specific frequency of the cantilever. Finally, based on the results of the finite element analysis and the experiment, it was verified that the piezoelectric shunt can effectively reduce the vibration of the cantilever.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

AUV hull lines optimization with uncertainty parameters based on six sigma reliability design

  • Hou, Yuan hang;Liang, Xiao;Mu, Xu yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.499-507
    • /
    • 2018
  • Autonomous Underwater Vehicle (AUV), which are becoming more and more important in ocean exploitation tasks, needs energy conservation urgently when sailing the complex mission path in long time cruise. As hull lines optimization design becomes the key factor, which closely related with resistance, in AUV preliminary design stage, uncertainty parameters need to be considered seriously. In this research, Myring axial symmetry revolution body with parameterized expression is assumed as AUV hull lines, and its travelling resistance is obtained via modified DATCOM formula. The problems of AUV hull lines design for the minimum travelling resistance with uncertain parameters are studied. Based on reliability-based optimization design technology, Design For Six Sigma (DFSS) for high quality level is conducted, and is proved more reliability for the actual environment disturbance.

Effects of NaCl Concentration and Solution Temperature on the Galvanic Corrosion between CFRP and AA7075T6

  • Hur, S.Y.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • To reduce structural weight, light metals, including aluminum and magnesium alloys, have been widely used in various industries such as aircraft, transportation and automobiles. Recently, composite materials such as Carbon Fiber Reinforced Plastics (CFRP) and Graphite Epoxy Composite Material (GECM) have also been applied. However, aluminum and its alloys suffer corrosion from various factors, which include aggressive ions, pH, solution temperature and galvanic contact by potential difference. Moreover, carbon fiber in CFRP and GECM is a very efficient cathode, and very noble in the galvanic series. Galvanic contact between carbon fiber composites and metals in electrolytes such as rain or seawater, is highly undesirable. Notwithstanding the potentially dangerous effects of chloride and temperature, there is little research on galvanic corrosion according to chloride concentration and temperature. This work focused on the effects of chloride concentration and solution temperature on AA7075T6. The increased galvanic corrosion between CRFP and AA7075T6 was evaluated by electrochemical experiments, and these effects were elucidated.

A Study on the Steam Reforming Reaction of DME on Cu/ZnO/Al2O3 Catalyst for Hydrogen Production (수소 생산을 위한 Cu/ZnO/Al2O3 촉매상에서 DME의 수증기 개질 반응 연구)

  • HYUNSEUNG BYUN;YUNJI KU;JUHEE OH;JAESUNG BAN;YOUNGJIN RAH;JESEOL LEE;WONJUN CHO
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.581-586
    • /
    • 2023
  • As the development of alternative energy is required due to the depletion of fossil fuels, interest in the use of hydrogen energy is increasing. Hydrogen is a promising clean energy source with high energy density and can lead to the application of environmentally friendly technologies. However, due to difficulties in production, storage, and transportation that prevent the application of hydrogen-based eco-friendly technology, research on reforming reactions using dimethyl ether (DME) is being conducted. Unlike other hydrocarbons, DME is attracting attention as a hydrogen carrier because it has excellent storage stability and transportability, and there is no C-C bond in the molecule. The reaction between DME and steam is one of the reforming processes with the highest hydrogen yield in theory at a temperature lower than that of other hydrocarbons. In this study, a hydrogen reforming device using DME was developed and a catalyst prepared by supporting Cu in alumina was put into a reactor to find optimal hydrogen production conditions for supplying hydrogen to fuel cells while changing reaction temperature (300-500℃), pressure (5-10 bar), and steam/carbon ratio (3:1 to 5:1).

Proposal of Modified Correlation to Calculate the Horizontal Global Solar Irradiance for non-Measuring Cloud-cover Regions (운량 비측정 지역을 위한 수평면전일사량 예측 상관식의 수정모델 제안)

  • Cho, Min-Cheol;Kim, Jeongbae
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.29-33
    • /
    • 2016
  • Recently, the authors of this paper proposed newly the correlation model to calculate the horizontal global solar radiation in Korea based the Zhang-Huang (ZH) model proposed in 2002 for China. Previous study was pronounced the correlation with a new term of the duration of sunshine proved as being closely related with the hourly solar radiation in Korea into ZH model. And then another modified correlation for the regions without measuring cloud cover was proposed and evaluated the accuracy and validity for those regions. So, this study was performed to propose modified correlation to calculate the horizontal global solar irradiance of non-measuring cloud-cover regions. Finally, this study proposed the new correlation that could well predict hourly and daily total solar radiation for all regions, various seasons, and various weather conditions including overcast and clear, with higher accuracy and lower error than other models proposed ever before in Korea for non-measuring cloud-cover regions.

Global warming effect Comparison of each material for railway vehicle (철도차량 차체재료별 온실가스발생량 비교)

  • Lee, Cheul-Kyu;Kim, Yong-Ki;Phirada, Pruitichaiwiboon
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.219-222
    • /
    • 2009
  • Green ocean is one of the main issues internationally. Most governments are leading the role in boosting the economy through creating new green market and establishing system of coping with increasing international environmental regulation. Green ocean, which is a solution for the environmental issue of global warming, is applied throughout the industry. Domestic transportation industry including railway is also developing technology for creating green ocean. Transportation must decrease energy consumption at running stages because it shows high environmental loads expecially on using stages during its life cycle. Therefore, There are some tries for developing technologies; new engine through alternative energies, hybrid and lightweight. Railway transportation can not be exception. it is intended for this paper to suggest the direction of manufacturing environmentally friendly railway vehicle through the global warming effect evaluation of several materials being applied to vehicle and comparison of the results.

  • PDF