DOI QR코드

DOI QR Code

Vibration Reduction of Cantilever using Passive Piezoelectric Shunt

수동형 압전션트를 이용한 외팔보의 진동저감 연구

  • Yun, Yangsoo (University of Science and Technology, Transportation System Engineering) ;
  • Kim, Jaechul (Korea Railroad Research Institute, New Transportation Innovative Research Center) ;
  • Noh, Heemin (Korea Railroad Research Institute, New Transportation Innovative Research Center)
  • 윤양수 (과학기술연합대학원대학교 교통시스템공학) ;
  • 김재철 (한국철도기술연구원 신교통혁신연구소) ;
  • 노희민 (한국철도기술연구원 신교통혁신연구소)
  • Received : 2018.11.23
  • Accepted : 2018.12.29
  • Published : 2018.12.30

Abstract

Piezoelectric shunt is an electric type damper capable of reducing the vibration of the structure. Vibration generated at the natural frequency of the structure are converted into electrical energy through the piezoelectric material attached to the structure. Electric energy can be dissipated by thermal energy using piezoelectric shunt composed of inductor and resistance to reduce vibration. In this paper, the equation for the optimum inductance required to reduce the vibration of the cantilever beam was examined and the vibration of the aluminum cantilever was reduced by using finite element analysis and experiments. In the finite element analysis, the mode shape and the strain energy distribution were calculated to examine the mounting position, and the vibration reduction of the cantilever was calculated by adjusting the inductance and resistance circuit values. In addition, in the experiment, a variable inductor module was used to reduce the vibration occurring at a specific frequency of the cantilever. Finally, based on the results of the finite element analysis and the experiment, it was verified that the piezoelectric shunt can effectively reduce the vibration of the cantilever.

압전션트는 구조물의 진동을 저감할 수 있는 전기적인 형태의 댐퍼이다. 구조물의 고유진동수에서 발생한 진동은 구조물에 부착된 압전재료를 통해 전기에너지로 변환된다. 전기에너지는 인덕터와 저항으로 구성된 압전션트를 이용하여 열에너지로 소산시켜 진동을 저감할 수 있다. 본 논문에서는 외팔보의 진동을 저감하기 위하여 필요한 최적 인덕턴스에 대한 수식을 검토하고 유한요소해석과 실험을 이용하여 알루미늄 외팔보의 진동을 저감하였다. 유한요소해석에서는 모드형상과 스트레인에너지 분포를 계산하여 부착위치를 검토하고, 인덕턴스와 저항의 회로값을 조절하여 외팔보의 진동저감량을 계산하였다. 또한, 실험에서는 가변인덕터 모듈을 사용하여 외팔보의 특정주파수에서 발생하는 진동을 저감하였다. 결국, 유한요소해석과 실험의 결과를 토대로 압전션트가 외팔보의 진동을 효과적으로 저감할 수 있음을 검증하였다.

Keywords

Acknowledgement

Supported by : 한국철도기술연구원

References

  1. Long Jin, Songyuan Ma and Weili Deng et al., (2018) Polarization­free high-crystallization ${\beta}$-PVDF piezoelectric nanogenerator toword self-powered 3D acceleration sensor, Nano Energy, Vol.50, pp.632-638. https://doi.org/10.1016/j.nanoen.2018.05.068
  2. Meysam Sharifzadeh Mirshekarloo, Chin Yaw Tan and Xiang Yu et al., (2018) Transparent piezoelectric flim speakers for windows with active noise mitigation function, Applied Acoustics, Vol.137, pp.90-97. https://doi.org/10.1016/j.apacoust.2018.03.017
  3. S. R. Anton and H. A. Sodano,(2007) A review of power harvesting using piezoelectric materials (2003-2006), Smart Material and Structures, Vol.16(3), pp.R1-R21. https://doi.org/10.1088/0964-1726/16/3/R01
  4. S. P. Beeby ,M. J. Tudor and N. M. White, (2006) Energy harvesting vibration sources for microsystems application, Measurement Science and Technology, Vol.17(2) ,pp.R175-195. https://doi.org/10.1088/0957-0233/17/12/R01
  5. M. AHMADIAN and K. M. JERIC, (2001) ON THE APPLIATION OF SHUNTED PIEZOCERAMICS FOR INCREASING ACOUSTIC TRANS­MISSION LOSS IN STRUCTURES, Journal of Sound and Vibration, Vol.243(2), pp.347-359. https://doi.org/10.1006/jsvi.2000.3417
  6. N. W. Hagood and A. von Flotow, (1991) Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks, Journal of Sound and Vihration, 146(2), pp.243-268. https://doi.org/10.1016/0022-460X(91)90762-9
  7. A. J. Fleming, S. Behrens and S. O. R. Moheimani, (2003) Reducing the Inductance Requirements of Piezoelectric Shunt Damping Systems, Smart Material Structure, Vol. 12, pp.57-64. https://doi.org/10.1088/0964-1726/12/1/307
  8. J. J. Holkamp, (1994) Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts, J. Intell. Material System Structure, Vol. 5, pp.49-57. https://doi.org/10.1177/1045389X9400500106
  9. C. H. Park, (2003) Dynamics modelling of beams with shunted piezoelectric elements, Journal of Sound and Vibration Vol. 268, pp115-129. https://doi.org/10.1016/S0022-460X(02)01491-8
  10. K. Uchino, T. Ishii, (1988) Mechanical damper using piezoelectric ceramics, Journal of the Ceramic Society of Japan, Vol. 96, pp863-867. https://doi.org/10.2109/jcersj.96.863
  11. Suresh Venna, Yueh-Jaw Lin, (2013) An Effective Approach for Optimal PZT Vihration Absorher Placement on Composite Structures, Modern Mechanical Engineering, Vol.3, pp.21-26. https://doi.org/10.4236/mme.2013.31002
  12. 김재환, (2004) 압전션트감쇠 기초이론, 소음.진통, Vol.14(2), pp.46-53.
  13. Granier J.J., Hundhausen R. J., Gaytan G. E., (2002) Passive Modal Damping with Piezoelectric Shunts, Proceedings of SPIE-the international society for optical engineering, Vol.4753, pp.583-589
  14. C. L. Davis and G. A. Lesieutre, (1995) A Modal Strain Energy Approach to the Prediction of Resistively Shunted Piezoceramic Damping, Journal of Sound and Vibration, Vol.184(1), pp.129-139. https://doi.org/10.1006/jsvi.1995.0308