• Title/Summary/Keyword: Energy Equation

Search Result 2,843, Processing Time 0.042 seconds

Working Electrical Energy Forecasting for Peak Load Estimation of Distribution Transformer (주상변압기 최대부하 추정을 위한 수용가 사용전력량 예측)

  • Park, Chang-Ho;Cho, Seong-Soo;Kim, Jae-Cheol;Kim, Du-Bong;Yun, Sang-Yun;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.929-931
    • /
    • 1998
  • This paper describes the peak load forecasting technique of distribution transformers with correlation equation. While customers are demanding safe energy supply, conventional correlation equation that is used for load management of distribution transformers in domestic has some problems. To get accurate correlation equation, se-correlation equation were examined using new collected using the measuring instrument dev for this study. It was recognized that the qua equation was the most accurate for peak forecasting from working electrical energy.

  • PDF

Gibbs Energy of Nonrandomly Mixed Lattice Solutions with a Specific Interaction (특정 상호작용을 갖는 논랜덤 혼합 격자 용액의 깁스 에너지)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.663-670
    • /
    • 2009
  • Performing random number simulations, we obtained an approximate distribution of the number of ways arranging molecules in a binary lattice solution of nonrandom mixing with a specific interaction. From the distribution an approximate equation of excess Gibbs energy for a binary lattice solution was derived. Using the equation, liquid-vapor equilibrium at constant pressure for 15 binary solutions were calculated and compared with the result from Wilson equation, Van Laar equation and Redlich-Kister equation.

A FINITE DIFFERENCE SCHEME FOR RLW-BURGERS EQUATION

  • Zhao, Xiaohong;Li, Desheng;Shi, Deming
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.573-581
    • /
    • 2008
  • In this paper, a finite difference method for a Cauchy problem of RLW-Burgers equation was considered. Although the equation is not energy conservation, we have given its the energy conservative finite difference scheme with condition. Convergence and stability of the difference solution were proved. Numerical results demonstrate that the method is efficient and reliable.

  • PDF

BLOW-UP PHENOMENA OF ARBITRARY POSITIVE INITIAL ENERGY SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.137-147
    • /
    • 2022
  • In this paper, we considered the Dirichlet initial boundary value problem of a nonlinear viscoelastic wave equation with nonlinear damping and source terms, and investigated finite time blow-up phenomena of the solutions to the equation with arbitrary positive initial data, under suitable conditions.

Calculation of the air ratio in the case of firing gaseous fuels containing incombustibles

  • Cho, Kil-Won;Kunwoo Han;Park, Heung-Soo;Lee, Yong-Kuk;Lee, Kun-Hong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • A short-cut equation for the calculation of the air ratio in the case of firing gases containing incombustibles has been derived on the basis of mass balances. The new equation requires the oxygen concentration and the amount of carbon dioxide in the combustion gas, theoretical oxygen and air requirements, and the content of incombustibles other than carbon dioxide in the fuel for the air ratio calculation. By using the equation, a theoretically correct calculation of the air ratio has been enabled.

  • PDF

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

The Analysis of the Electron Drift Velocity and Characteristics Energy in $SiH_4$ Plasma gas by Electron Swarm method (전자 Swarm법에 의한 $SiH_4$ 플라즈마의 전자이동속도 및 특성에너지 해석)

  • 이형윤;백승권;하성철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.88-93
    • /
    • 1999
  • This paper describes the electron transport characteristics in $SiH_4$ gas calculated for the range of E/n:0.5~300(Td) and Pressure:0.5, 1, 2.5(Torr) by the Monte carlo simulation and Boltzmann equation method using a set of electron collision cross sections determined by the reported results. The motion has been calculated to give swarm parameters for the electron drift velocity, longitudinal and transverse diffusion coefficients, the electron ionization coefficients, characteristics energy and the electron energy distribution function. The electron energy distributions function has been analysed in $SiH_4$ at E/N: 30, 50(Td)for a case of the equilibrium region in the mean electron energy and respective set of electron collision cross sections. The results of Monte carlo simulation and Boltzmann equation have been compared with experimental data by ohmori ad Pollock.

  • PDF

ESTIMATION OF ENERGY & MOMENTUM COEFFICIENTS IN OPEN CHANNEL BY CHIU'S VELOCITY DISTRIBUTION EQUATION (Chiu의 유속공식에 의한 유속분포계수의 추정)

  • 추태호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1992.07a
    • /
    • pp.55-66
    • /
    • 1992
  • The energy and momentum coefficients ${\alpha}$ and ${\beta}$ are measures of homogenerity of velocity distribution in a chanel section. They indicate the effect of energy and momentum transport. However, in most practical applications, they are assumed to be unity due to the difficulty in estimating them. Efforts have been made in this study to estimate these coefficients and to develop equations for practical applications. The Prandtl-von Karman logarithmic equation as being used today has limitations and far-reaching assumptions. Therefore, this paper uses Chiu's velocity distribution equation which seems to be capable of serving as such an alternative, to estimate the velocity distribution and the energy and momentum coefficients, ${\alpha}$ and ${\beta}$ results are compared with those computed by other existing equations. For practical applications, this paper also uses Chiu's equation along with the Mannig's equation to calculate ${\alpha}$, ${\beta}$ without velocity data

A Simulation of the Energy Distribution Function for Electron in CF4, CH4, Ar Gas Mixtures (시뮬레이션에 의한 CF4, CH4, Ar혼합기체(混合氣體)에서 전자(電子)에너지분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f(\varepsilon)$ has the symmetrical shape whose axis of symmetry is a most probably energy. The measured results and the calculated results have been compared each other.

A New Model and Equation Derived From Surface Tension and Cohesive Energy Density of Coagulation Bath Solvents for Effective Precipitation Polymerization of Acrylonitrile

  • Zhou, You;Xue, Liwei;Yi, Kai;Zhang, Li;Ryu, Seung Kon;Jin, Ri Guang
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.182-186
    • /
    • 2012
  • A new model and resultant equation for the coagulation of acrylonitrile monomers in precipitation polymerization are suggested in consideration of the surface tension (${\gamma}$) and cohesive energy density ($E_{CED}$). The equation was proven to be quite favorable by considering figure fittings from known surface tensions and cohesive energy densities of certain organic solvents. The relationship between scale value of surface tension (${\gamma}$/M) and cohesive energy density of monomers can be obtained by changing the coagulation bath component for effective precipitation polymerization of acrylonitrile in wet spinning.