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A FINITE DIFFERENCE SCHEME FOR RLW-BURGERS
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ABSTRACT. In this paper, a finite difference method for a Cauchy problem

- of RLW-Burgers equation was considered. Although the equation is not
energy conservation, we have given its the energy conservative finite dif-
ference scheme with condition. Convergence and stability of the difference

solution were proved. Numerical results demonstrate that the method is
efficient and reliable.
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1. Introduction

The RLW-Burgers equation in general has the following form [1]:
Us + Vg + SUUy — Otgy — Plzer = 0, | (1)

which is a model equation of describing the propagation of surface water waves in
a channel. In equation (1), the variables are all scaled, with z proportional to the
horizontal coordinate along the channel, ¢t proportional to the elapsed time, and
u = u(z,t) proportional to the vertical displacement of the surface of the water
from its equilibrium position, the coefficients =, é, a, 3 are all constants, here «
and ( are called dissipative and dispersive coefficient, respectively. Equation (1)
represents a balance relation among the dispersion, dissipation and nonlinearity,
and equation (1) is called the RLW-Burgers equation, since it is the so-called
regularized long-wave (RLW) equation

Ut + Yz + Sully — Buzat =0, - (2)

with a Burgers-type dissipative term ” — qug,” (a > 0) appended. Mathematlcal
theory and numerical methods for (2) was considered in [3-7].

U + ugp + a(up):r — Bugg = 0, (3)
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which is usually called the generalized regularized long-wave (GRLW) equation,
has been studied by many authors too. Dogan Kaya [8] gives the exact solitary-
solutions of GRLW equation (3), and construct numerical solutions using ADM
(Adomian decomposition method) without using any discretization technique.
Recently, Luming Zhang gives a finite dlfference scheme for generahzed regular-
ized long-wave equation in [9).

Without loss generality, here we will take v = 1,§ = 12 in the equation (1),
and therefore the RLW-Burgers equation to be discussed in the present paper is
of the following form

Ut + Uy + lzuum = QUgy — B’ux:nt == 03 (4)

uli=0 = uo(x). | (5)

Mingliang Wang gives the exact solutions of this equation in [2]. Motivated
by Zhang’s work, we study equation (4). Although the equation is not energy
conservation, we have given its the energy conservative finite difference scheme
with condition. Convergence and stability of the difference solution were proved.
Numerical results demonstrate that the method is efficient and reliable.

The propose of this paper is to present a conservative finite difference scheme
for the initial value problem (4), (5), and proof convergence and stability of the
scheme. An outline of the paper is as follows. In section 2, a conservative finite
difference scheme for the initial value problem (4), (5) is proposed. In section 3,
convergence and stability of the scheme are proved. Numerical experiments are
reported in section 4.

2. Finite difference scheme and cons_ervation law

As usual, the following notations will be used

n o n

| Ujpy — U U1
(U?)m = h . ) (u?)f - . “h . ’
n+1 -1
(u")s = ot 2 B 1 (W), = 24— ]
1/x 2h ? j/t 9 )
(u” v")—hzu, i, et = un), llunlloo = sup |u]

J

where h and 7 are the spatial and temporal step sizes, respectively, and T =
Jjh,tn, = nT. Superscript n denotes a quantity associated with the time-level t,
and subscript j denotes a quantity associated with space mesh point ;. In this
paper, C' denote general constant, which may have different value in different
place.

Now we consider the finite difference method for the problem (4), (5). Since

(12)e = 2 lune + (7)z),
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then the following finite difference scheme is considered.

(u})g + 1 "2" d [(u;‘“)fc +(u;™)s ] +0(ul)s — BT 55 — (U] )es

+2[u;}(u?+1+u;}—l) 4 [u ( n+1+un 1)] ] __0 (6)

’U,? - U'O(jh')a (7)

where 0<#<1 is a real constant.

Lemma 1. The finite difference scheme (6), (7) is conservative for discrete
energy, t.e.,

1 n 11 n n ‘n
E™ = o (Jlu)? + [l %) + (||u PR+ uzll?) + 07h Y (uf)aus 4
j
(-—1)”“a72[u}"+1(u;~‘)x + u_';-‘(u;?'“)x] == Ey, (8)
J
Proof. Computing the inner product of (6) with u**! 4+ 4*~!, we obtain
1 n n— ﬁ 14 n— n n—
o™ = 2+ e 12 = e ™) + ehz g
+(p, n+1 + un 1) az n:a: 31-{-1 4 unwl) =0, : (9)
; | -

where p = Z{U?(U?+l + U?_l)j + [u;?'(u;-‘ﬂ + U?_l)]j‘;]. Now, we compute last
three terms of the left-hand side in (9).

6k Z(u;%)j,(u;?“ +ul )
= h@ Z(u;‘ "'+1 4 = Z(""'JH 1) ?—1
= hé Z(u U Z(uj-i-lun PoufogupTh) | (10)

—hez:w P4 S (! - g

J

""9’12[(“ DR (Ve P

(p,u™t! + 'U-"'“ )

_ ZhZ uPtl g u”‘ De + [uf (@ + ) (u T F )

n(,ntl 1 n—1 n—1 :
”Z (U’Jil n+ Vtugg —uiy) (11)

1 —1 1 -1 1 -1
+u3+1(u?:1 + u.H-l ) —uj- 1('“'?+1 + u?—q )](U?+ + U? )
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1 - 1 1 1
= Y P +u) + wa R+ DI
- - 1 1
= Y @t R T O )

J
=0,

—ah z:('u,"'-")a,;f('u"f‘+1 + u'-""l)

J
=_% _(J+1 2uj +uj_1)(u n+1+un 1) |
- o D + 1505+ 5 u?(u;-‘“lm 02)
= —a Z[U"“ W)z + ul (W}, az +"§"(U?;l)x]- |
Substitute (10), (11) and (12) into (9), and let
B = (P + ||u"+1112> Ozt + 2l
+9‘rhz "H + (-1 nHG’TZ[UnH ul )z + uj ?+l)x]’ (13)

j
we obtain (8).
3. Convergence and stability of finite difference scheme

First, we consider the truncation error of the finite dlﬁ'erence scheme (6), (7 )
Suppose v} = 'u,(:z:J, n), then we have | | _

Er? = (v}); + 1;—6[(v?+1)m + (077 1)s] + 0(v "‘)5—' B} ) zai (14)
+2[v}

(v n+1+'Un 1) ‘*‘['U (v n+1+vn 1)]-'::]_0‘('“3 )az-

According to Taylor’s expansion, it can be easﬂy obtained that linear part of
(14) at point (z;,t,) satisfies

1-9 |
(W7); + —o— W] )z + (W7 V)a] + 60}z — BO]) gz — (0] )az
= (vt + vy — BUzat — Q'Ua::n)i(mj,tn) + O(h2 + TQ). \ - (15)

The last 2th term of (14) can be written as

Q= 2[vf (u7" " + 07" 1) + [P (T + 07T ]

— 2_'0J ( ;"“ + ] D 2[v"(u"+1 + 'v"' Nz
= 2.'03 ( A 'Un 1) 5] + h[vj-}—l( ?:11 + 'U;L+11) — 'UJ 1 ( ;Hll + 'Un 1)] (16)
By making Taylor’s expansion and miscellaneous computation for above equa-
tion, we get | "

= (6(4)2)|(z;,ta) T O(h* + 77).
Therefore Er7 = O(h? + 72).
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Lemma 2. Assume u(x,t) is enough smooth, then the local truncation error of
finite difference scheme (6), (7) is O(h® + 72).

Next, we consider convergence and stability of the finite scheme (6), (7).

Lemma 3. (Discrete Sobolev’s inequality [10]). For any discrete function up

and for any given € > 0, there exists a constant K(e,n), depending only € and
n, such that

[ oo < elluzll + K (e, n)lju"]].

Lemma 4. [10]. Suppose that the discrete function w, satisfies recurrence
formula

Wn — Wn—1 < ATWn + BTwn-1 + ChT,

where A,B and Cy, (n=1,..., N) are nonnegative constants. then

N
lwaljoo < (wo+ 7Y Ci)eXA+BIT,
k=1

where T is small, such that (A+ B)T < %(N > 1).
Lemma 5. Assume ug € H}, then there is the estimation for the solution of

the difference scheme (6), (7),
I < C, Jluzll < G [[u"fleo < C.

Proof. We obtain from (8)

1
SO+ %) + 2 (2 + )

< C+ 6rh Z(u;-‘)iu;f“ +lalr)_luptt@h)e + uf(uft)s |
J

<04 Sl S ) e e
+Hluz %)
It is 5
(1 —vle| = on)lu 2+ (1 = ~lau™? + (B — vleDluztHI*
+(0 = 67 —vlal)lluz* < C, (18)
where v = —. Let 7 be small, such that v < min(—— 1 1 —), we obtain from (18)

h la| B
lu™]| < C,|luZ| < C. It follows from Lemma 3 that ||u"| < C.

Theorem 1. Assume ug(z) € H}, and u € C%3) | then the solution of the

conservative difference scheme (6), (7) converges to the solution of the p'r'oblem
(4), (5) with order O(h? + 12) by loe norm.
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Proof. Let €] = v} — u}. Subtracting (6) from (14), we have

= ()i + gg (€72 + (657l + 0(eP)a + 20f (0 + 057
-|-[’U ( n+1+,vn ]:x: ( n+1+un 1) [u ( ;1+1+u;l 1)]2:] 1
_5(3 ):n:r:t - Ot(e ):r,:r.a | | ( 9)

Computing the inner product of above equation with e"*! + "™, we get
(ET"’, 6n«}-l + en-—l)
1 - f 1532 1
= -2-,;(||:<3"+1II2 = [le™ %) + —(lIeZI”LlH-2 —|lez 7 [1*) + 6h Z(t’%‘")zﬁ(e}"-+

+e}‘“1) + I+ I, et + e 1) —ah Z(e "’“ +e;” 1), (20)

where

I= 2['0}"(11;-‘“ + v;-""l');g — 'u,;-‘('u”-"+1 + u;-‘"l)j;],

J
17 =2{f7 (7 + 077 D)]s — ful (WP + uf el

According to Lemma 5, the 4th term of right-hand side of (20) is follows:

=2h Y PP+ ol — ul (Wl + s (ef T + e

J 7
j .
=2h ) (e +ef e + (0 — w4 Tl e
J
=20 3[Rt 4 ef e+ F T u el ) (o

7J
SCRY NG +ef Malled™ +ef |+ e} lleft +ef7 ]
;
< C(llet % + llez= % + lle™ 1% + lle™|12 + le™H]I?),
(I1,e"t! +en71)

= 2D e = Sl 4

n.+1 n 1 n n.+1 n-—l
= E:[ (Vi +vi) — v (v +ups

J+1(u;l}:11 + ujy )+ U 1("3""Jrl +uji_) )](ew1 +e;” Y (22)
=2h ) llef (@it +uf )]s + P + el + e )

| J
S ORI+ e + ez + e + fen )

The last term of (20) can be written as
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—ahZ(e n+1+en 1)
-=-aZ 7 “>x+e"(e”+‘>x+e (€5 + ¢ ()
<C|az 1th1(e ;"_',fll(e )z +e”.‘(e”."+1)m——ej+1(e;'+l)$

+e (e nhl)x - ?+1( e;” 1):8 +en 1( 7z — ] 11(6?):5] |
<2C | a | hl(erN)a(ede + (e))a(er el
<Cllent P £ ezl + '3
In addition, there exist obviously that
(Bre,entt 1 en=1) < ||Brn|? + (et 2 + en12)  (24)
Substituting (21)-(24) into (20), we get
o= (e 2 — ™) + 2 ezt ~ ez )
CSUEIR 4 LR + e 2) + 2(en® + e + e )
SOl + ezl + e |2 + e 2 + e + Jle12)

Let B = 3(|le™ |12+ |le™]|2) + £(lle2*1|2+ ||e™||?). Then (25) can be rewritten
as

(23)

(25)

B" — B" ! < 7||[Er*||* + Cr(B™ + B™1). (26)

By lemma 4 it can immediately be obtained that |
BN <(B°+T sup ||Er"|?*)e“’. (27)
1<n<N .

Thus we can choose a two order method to compute ul such that BY <
[O(h? + 72)]? 1t follows from (27) that |[e”]| < O(h? +72), |le?|| < O(h?+ 72).
According to Lemma 3 there exist that {je"|loo < O(h? + 72). Sxmﬂa,rly, it can
be proved that - -

Theorem 2. Under the conditions of the Theorem 1, the solution of conservative
finite difference scheme (6), (7) is stable by los norm.
4. Algorithm and numerical experiments
Let in (4), @ = 1,8 = 1. Then, the solitary wave solution of (4) is u(z,t) =

23 1 t 1 t ]2
——— — Ztanh (:z: + ) + — 10 [tanh(a:-{— )] . In the numerical experiments, we

120 5 10 10 ,
solve the problem (4), (5) in [-50,50]. According to solitary wave solutlon, we
2 1
take ug = u(—50,1,),u] = u(50,t,), up(x) = _1—‘23(3 ~% tanh(z) + [tanh(:r)]z.

Thus, the system(6), (7) can be written as

AUt + Bpug 4 Opugf = DR = 1,0, Ln=1,., N = 1),

(28)
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u3 = uo(jh)(j = 1,..., J), (29)
where |
n Y 1-6 n n o
A} = _"‘(‘2_'1 — 2y(uj +uj_,) — hz'(] = 1,. —1) | (30)
2 . |
B"’=l+hz,(g=1,...,J—1,n=1,...,N—1), (31)
n_ Y(1=0) n o om 1, |
CF = 5t 2y(uj +ugi) — hg:(.? =1.,J-1) (32)

D} = Bjuj™ (Cn };22) iy (An 1;22)? - 78 3'+1. 31)+

2 :
I;Y( J+1-—2u +u,J ), 0=4L..,J-1,n=1,...,,N—-1) (33)

Then (30)-(33) is a linear tri-diagonal system for u}'“. Hence it can be solved
by the formulas

Wit =piultl g i=J-1,7-2,..,1, | (34)
where | |
. - C? - D% — A%q;i | o
| ] 2 7 1) By -
p; = — - 4G = == j=1,2,-..,J-1 35)
J B;-"+Ajpj._1 9 Bj +A;-‘pj__1 J ( )

po =0, 90 = 0. - (36)

We take h = 0.2, = 0.1, and 8 equal to 0, 0.25, 0.5, 0.75 and 1, respectlvely
. The maximal error ||e"||oo are listed in Table. According to the data of the
table we can draw a conclusion that our scheme (6), (7) is efficient and reliable.

t lle™ || oo o | o

6 =0.0 6 =025 6 =05 6=0.75 6=1.0 |
0.2 7.650x 10~ 7.697 x 10°° 7.741 x 10~ ° 7.785 x 10~°> 7.827 x 10~ °
0.3 6.954 x10™° 6.913 x 107° 6.876 x 1075 6.845 x 105 6.819 x 10~°
0.4 1.490 x 10% 1.499 x 10™* 1.507 x10~* 1.514 x10~% 1.520 x 10~%
0.5 1.334x107% 1.327x107% 1.321 x10~% 1.317x10~* 1.315x 1074
0.6 2.160 x 107* 2173 x 107*  2.183 x 107* 2.190x 107 . 2.193 x 10~*
0.7 1918 x107* 1.900x 10~* 1.885x 107* 1.883 x 10™* 1.887 x 10~*
0.8 2774 x 10~* 2.805 x 10™* 2.830 x 107* 2.850 x 107 2.862 x 10~*
0.9 2474 x107% 2443 x 107* 2.420 x 10~* 2.406 x 10™* 2.401 x 10™*
1.0 3.385x 10™* 3.426 x 10™* 3.456 x 10™* 3.475 x 10™* 3.481 x 107*

5. Conclusxons

We have illustrated how an energy conservative ﬁmte difference scheme can be
used to solve RLW-Burgers equation. The equation is not energy conservation,
and perhaps the first time we have given the energy conservative finite difference
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scheme for it. The accuracy of the numerical solutions indicates that the method
1s well suited for the solution of the RLW-Burgers equation. It is different from
the opinion in [9] that numerical solutions for the equation obtained by this
scheme seem to have little effect with the variation of the parameter 8 in this
paper.
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REFERENCES

. J. L.. Bona, W. G. Pritchard and L. R. Scott, An evaluation of A model Equation for Water

Waves, Phil. Trans. Roy. Soc. London 302 (1981) (1471): 457-510.

M. Wang, Ezact Solutions for the RLW-Burgers Equation, Chinese J. Ma.th Appl. 8 (1995)
(1): 51-55.

. J. C. Eilbeck, G. R. Mcguire, Numerical study of the regularized long-wave equation, I:

Numerical methods, J. Comput. Phys. 19 (1975) 43-57.

. J.C. Eilbeck, G.R. Mcguire, Numerical study of the regularized long-wave equation, II:

Numerical methods, J. Comput. Phys. 23 (1977) 63-73. 123-245.

Q. Chang, G. Wang, B. Guo, Conservative scheme for a model of nonlinear dispersive
waves and its solitary waves induced by boundary notion, J. Comput. Phys. 93 (1991)
360-375.

L. Zhang, Q. Chang, A new finite difference method for regularied long-wave equation,
Chinese J. Numer. Method Comput. Appl. 23 (2001) 58-66.

D. Bhardwaj, R. Shankar, A computational method for reqularied long wave equation, Com-
put. Math. Appl. 40 (2000) 1397-1404.

Dogan Kaya, A Numerical simulation of solitary-wave solutions of the generalized regular-
1zed long-wave equation, Appl. Math. Comput. 149 (2004) 833-841.

L. Zhang, A finite difference scheme for generalized regularized long-wave equation, J. Appl.
Math. Comput. 168 (2005) 962-972.

10. Y. Zhou, Application of Discrete Functional Analysis to the Finite Dzﬁerence Method,

Inter. Acad. Publishers, Beijing, 1990.

Xiaohong Zhao received her B.Sc from Hebei normal university in 2002 and M.Sc at
Yanshan university in 2007. Her research interests focus on the numerical analysis and
techniques for solving partial differential equations.

Department of Mathematics, Faculty of science, Yanshan university, Hebei province, Qin-
huangdao, 066004. P. R. China.,

e-mail: zhxh_98@sina.com

Desheng Li received his B.Sc from northeast normal university in 1986 and M.Sc at Shanxi

normal university in 1992. His research interests focus on the techniques for solving partial
differential equations and harmonic analysis .

Department of Mathematics, Faculty of science, Yanshan University, Hebei province, Qin-
huangdao, 066004. P. R. China.

e-mail: dsl_66380163.con.
Deming Shi He is a student in Yanshan university now. His research interests focus on

the Computer science.

Department of Mathematics, Faculty of science, Yanshan university, Hebei province, Qin-
huangdao, 066004. P. R. China.

e-mail: minimice®126.com



