• Title/Summary/Keyword: Energy Detector

Search Result 890, Processing Time 0.026 seconds

Compressibility of $FeS_{2}$ ($FeS_{2}$의 압축성 연구)

  • Kim, Young-Ho;Hwang, Gil-Chan;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.189-195
    • /
    • 2006
  • Compression work on a pyrite powder has been carried out using energy dispersive X-ray diffraction (EDXRD) with Mao-Bell type diamond anvil cell (DAC) and synchrotron radiation(SR) at room temperature. It has been reported the bulk moduli of pyrite show the large variations depending on the experimental conditions as well as the apparatus used. Thus, two kinds of sample in different pressure transmitting media of both NaCl and MgO powder emerged in alcoholic fluids were subjected to measure their compressibilities. Bulk moduli thus obtained are 138.9 GPa and 198.2 GPa, respectively, and this result contradicts to the anticipated values according to the hydrostaticity conditions of the sample chamber. This might be due to the alcoholic fluids phase transition mainly with the side effects from the difference of both solid state detector (SSD) used and E*d value applied. All experiments were performed at the Beam Line 1B2 of Pohang Light Source (PLS).

Development of a Coded-aperture Gamma Camera for Monitoring of Radioactive Materials (방사성 물질 감시를 위한 부호화 구경 감마카메라 개발)

  • Cho, Gye-Seong;Shin, Hyung-Joo;Chi, Yong-Ki;Yoon, Jeong-Hyoun
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.4
    • /
    • pp.257-261
    • /
    • 2004
  • A coded-aperture gamma camera was developed to increase the sensitivity of a pin hole camera made with a pixellated CsI(Tl) scintillator and a position-sensitive photomultiplier tube. The modified round-hole uniformly redundant array of pixel size $13{\times}11$ was chosen as a coded mask considering the detector spatial resolution. The performance of the coded-aperture camera was compared with the pin hole camera using various forms of Tc-99m source to see the improvement of signal-to-noise ratio or the improvement of the sensitivity. The image quality is much improved despite of a slight degradation of the spatial resolution. Though the camera and the test were made for low energy case, but the concept of the coded-aperture gamma camera could be effectively used for the radioactive environmental monitoring and other applications.

A study on Light Tracking using Intel's 8080 microprocessor (INTEL 8080 microprocessor를 이용한 광추적에 관한 연구)

  • 이동렬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 1985
  • Solar energy has its advantages not to be interruped by anything, which is wing to not only limitlessness in its source but shortness in its wave. Availing of tha advantages, we can look forword to vast allication. This study whose aim is to raise the effectuality of it by means of chasing the source correctly, which is to be acheved by the circularty of sensor. The consequence has been gained by two sensors is amplified and transfered to TTL leveland becomes "INPUT DATA" of INTE 8080CPU. The INTEL 8080CPU whose system is machinated to give cotrol pulse to moter driving circuit has the source and the sensors placed correctly on the basis of the data. DC motor taskes the advantage not to be in need of UP/DOWN counter, which is defferent from stepping motor. The system is composed of light detector, A/C converter, INPUT Interface, INTEL 8080 CPU, OUTPUT Interface, notor driving circiut. We can give correct chase to light experimentally as far as an error is the space of 1.2.ce of 1.2.

  • PDF

DEVELOPMENT AND EVALUATION OF A PHANTOM FOR MULTI-PURPOSE DOSIMETRY IN INTENSITY-MODULATED RADIATION THERAPY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.43 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • A LEGO-type multi-purpose dosimetry phantom was developed for intensity-modulated radiation therapy (IMRT), which requires various types of challenging dosimetry. Polystyrene, polyethylene, polytetrafluoroethylene (PTFE), and polyurethane foam (PU-F) were selected to represent muscle, fat, bone, and lung tissue, respectively, after considering the relevant mass densities, elemental compositions, effective atomic numbers, and photon interaction coefficients. The phantom, which is composed of numerous small pieces that are similar to LEGO blocks, provides dose and dose distribution measurements in homogeneous and heterogeneous media. The phantom includes dosimeter holders for several types of dosimeters that are frequently used in IMRT dosimetry. An ion chamber and a diode detector were used to test dosimetry in heterogeneous media under radiation fields of various sizes. The data that were measured using these dosimeters were in disagreement when the field sizes were smaller than $1.5{\times}1.5\;cm^2$ for polystyrene and PTFE, or smaller than $3{\times}3\;cm^2$ for an air cavity. The discrepancy was as large as 41% for the air cavity when the field size was $0.7{\times}0.7\;cm^2$, highlighting one of the challenges of IMRT small field dosimetry. The LEGO-type phantom is also very useful for two-dimensional dosimetry analysis, which elucidates the electronic dis-equilibrium phenomena on or near the heterogeneity boundaries.

A Method for Determining Dead Times of a G.M. Defector as a Function of the Count Rate

  • Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.3-7
    • /
    • 1971
  • A method for determining dead times of a G.M. detector as a function of the count rate has been investigated using the Mn$^{56}$ radioactive sample. The formula, (equation omitted), seems to be useful for determining a relation between the dead time and the count rate. Here (equation omitted)(N$_1$) is the dead time for the count rate N$_1$, N$_1$is the count rate at time zero, Nt is the count rate at time t, λ is the radioactive decay constant of the sample used, and t is the time between the first and second runs. When all the counting data were corrected for the dead times evaluated with this formula and then a variation of these corrected counting data with rime was observed, the results showed quite a good agreement with the published data for the radioactive decay of Mn$^{56}$ . Besides, it appears that the dead time decreases as the count rate increases in a dead time-to-count rate relation obtained by the same formula.

  • PDF

A Study on the dose distribution and the accuracy of the system for small fields of high energy x-rays (고에너지 X-선 소조사야의 선량분포 및 계측에 관한 연구)

  • 이호남;지광수;김재휴;지영훈
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.7 no.1
    • /
    • pp.32-44
    • /
    • 1995
  • I. 제 목 고에너지 X-선 소조사야의 선량분포 및 계측에 관한 연구 II. 연구의 목적 및 중요성 최근 수술이 어려운 뇌종양등에 대한 방사선수술법(Radiosurgery)이 관심의 대상이 되고 있다. 방사선수술법은 크게 나누어 200여개의 Co-60이 장착된 장치(Gamma Knife)를 이용하는 방법과, X-선치료기를 이용하는 방법은 몇개의 보조기구를 설치하면 가능한 매우 경제적인 방법이다. 따라서 Microtron을 이용한 방사선수술의 기초자료확보를 위하여 소조사야에 대한 선량과 선량분포의 측정 및 계산을 실시하였다. III. 연구의 내용 및 범위 Microtron으로부터 조사되는 6MV, 10MV, 21MV X-선의 지름 3cm이하 소조사야에 대한 정확한 선량 및 선량분포 자료를 확보하기 위해, 가. Microtron치료기와 보조장치등에 대한 정밀도 계측 및 평가 나. 보조 Collimator의 적당한 크기와 재료의 선택 및 설계, 제작. 다. 에너지와 조사야 크기 각각에 대한 여러측정장치(Ion chamber, Diode detector, TLD 및 Film등)를 이용한 선량 및 선량분포 측정. 라. 측정값들의 비교, 검토 및 측정된 자료에 의한 선량 및 선량분포의 계산을 수행했다. IV. 연구결과 및 활용에 대한 건의 본 연구에서 얻은 결과는 다음과 같다. 가. Microtron치료기와 보조장치등의 정확도의 허용 오차범위내에서 잘 일치하였다. 나. 보조 collimater adpator는 총 길이 24cm로 하였으며 재질로는 두랄미늄을 사용하였고, 보조 collimator는 low melting alloy를 사용하였으며 소조사야 크기의 정확도는 0.5mm이내에서 매우 잘 일치 하였다. 다. 방사선 수술법의 에너지 선택에 중요한 요소중의 하나인 penumbra는 6MV X-선에서 가장 적게 나타났으며 라. 소조사면에 대한 깊이-선량 백분율곡선은 모든 에너지에서 조사면이 작아질수록 표면으로 이동하는 경향을 보였다. 이상의 결과로부터 방사선 수술을 시행할 경우 수십억원에 이르는 장비의 도입이나 새로운 시설 없이 Microtron에서 조사되는 고에너지 X-선을 이용할 수 있을 것으로 사료된다. 또한 새로 구입한 측정기나 보조 Collimator를 이용하여 소조사야에 대한 선량측정기술을 습득함으로써 일반적인 소조사야의 방사선치료나 회전치료등에 활용할 수 있다.

  • PDF

Physical principles of digital radiographic imaging system (디지털 방사선영상 시스템의 기본적 원리)

  • Choi, Jin-Woo;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.40 no.4
    • /
    • pp.155-158
    • /
    • 2010
  • Digital radiographic systems allow the implementation of a fully digital picture archiving and communication system (PACS), and provide the greater dynamic range of digital detectors with possible reduction of X-ray exposure to the patient. This article reviewed the basic physical principles of digital radiographic imaging system in dental clinics generally. Digital radiography can be divided into computed radiography (CR) and direct radiography (DR). CR systems acquire digital images using phosphor storage plates (PSP) with a separate image readout process. On the other hand, DR systems convert X-rays into electrical charges by means of a direct readout process. DR systems can be further divided into direct and indirect conversion systems depending on the type of X-ray conversion. While a direct conversion requires a photoconductor that converts X-ray photons into electrical charges directly, in an indirect conversion, lightsensitive sensors such as CCD or a flat-panel detector convert visible light, proportional to the incident X-ray energy by a scintillator, into electrical charges. Indirect conversion sensors using CCD or CMOS without lens-coupling are used in intraoral radiography. CR system using PSP is mainly used in extraoral radiographic system and a linear array CCD or CR sensors, in panoramic system. Currently, the digital radiographic system is an important subject in the dental field. Most studies reported that no significant difference in diagnostic performance was found between the digital and conventional systems. To accept advances in technology and utilize benefits provided by the systems, the continuous feedback between doctors and manufacturers is essential.

Size Measurement of Radioactive Aerosol Particles in Intense Radiation Fields Using Wire Screens and Imaging Plates

  • Oki, Yuichi;Tanaka, Toru;Takamiya, Koichi;Osada, Naoyuki;Nitta, Shinnosuke;Ishi, Yoshihiro;Uesugi, Tomonori;Kuriyama, Yasutoshi;Sakamoto, Masaaki;Ohtsuki, Tsutomu
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2016
  • Background: Very fine radiation-induced aerosol particles are produced in intense radiation fields, such as high-intensity accelerator rooms and containment vessels such as those in the Fukushima Daiichi nuclear power plant (FDNPP). Size measurement of the aerosol particles is very important for understanding the behavior of radioactive aerosols released in the FDNPP accident and radiation safety in high-energy accelerators. Materials and Methods: A combined technique using wire screens and imaging plates was developed for size measurement of fine radioactive aerosol particles smaller than 100 nm in diameter. This technique was applied to the radiation field of a proton accelerator room, in which radioactive atoms produced in air during machine operation are incorporated into radiation-induced aerosol particles. The size of $^{11}C$-bearing aerosol particles was analyzed using the wire screen technique in distinction from other positron emitters in combination with a radioactive decay analysis. Results and Discussion: The size distribution for $^{11}C$-bearing aerosol particles was found to be ca. $70{\mu}m$ in geometric mean diameter. The size was similar to that for $^7Be$-bearing particles obtained by a Ge detector measurement, and was slightly larger than the number-based size distribution measured with a scanning mobility particle sizer. Conclusion: The particle size measuring method using wire screens and imaging plates was successfully applied to the fine aerosol particles produced in an intense radiation field of a proton accelerator. This technique is applicable to size measurement of radioactive aerosol particles produced in the intense radiation fields of radiation facilities.

Influence of Mg composition on growth and characteristic of MgZnO/ZnO heterostructure (MgZnO/ZnO 이종접합구조의 특성과 성장에 Mg 합성이 미치는 영향)

  • Kim, Young-Yi;Kong, Bo-Hyun;Kim, Dong-Chan;An, Cheol-Hyeon;Han, Won-Seok;Choe, Mi-Gyeong;Jo, Hyeong-Gyun;Moon, Jin-Young;Lee, Ho-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.73-73
    • /
    • 2008
  • 일반적으로 청색 및 자외선 발광다이오드, 레이저 다이오드, UV 감지기 (detector)소자 등의 기술적인 중요성은 ZnO를 기반으로 하는 산화물 반도체와 함께 와이드 밴드갭 반도체 연구가 활발히 진행되고 있다. ZnO의 경우 밴드갭 엔지니어링을 위해 일반적으로 Cd과 Mg을 사용하고 있으며 특히, ZnO에 Mg을 첨가하여 MgZnO 화합물을 첨가할 경우 밴드갭을 3.3eV~7.8eV까지 증가 시킬 수 있고, MgZnO/ZnO 초격자 구조를 이용할 경우 자유 엑시톤 결합에너지를 100meV 이상까지 증가시킬 수 있는 장점을 가지고 있다. 그러나 MgO는 결정구조가 rocksalt 구조를 가지는 입방정 구조이기 때문에 Hexagonal 구조를 가진 ZnO에 첨가될 경우 고용도에 큰 제한을 가지게 된다. 이와 같은 문제점으로 인하여 밴드갭 엔지니어링 기술은 여전히 해결되지 않은 문제점으로 남아 있다. 본 실험에서는 RF 마그네트론 스퍼터링 방법으로 사파이어 기판위에 MgZnO/ZnO 박막을 co-sputtering 시켰다. Targer은 ZnO(99.999%) 와 MgO (99.999%) target을 사용하였고, 스퍼터링 가스는 아르곤과 산소가스를 2:1 비율로 혼합시켜 성장하였다. MgZnO 박막을 성장하기 전 ZnO 층을 ~500 두께로 성장 시켰다. RF-power는 ZnO target을 고정 시키고, MgO targe power를 변화시켜 Mg 농도를 조절 하였다. 실험 결과 MgO target power 가 증가 할수록 반치폭이 증가하고, c-plane을 따라 격자 상수가 감소하는 것을 확인 할 수 있고, UV emission peak intensity가 감소며 단파장쪽으로 blue shift 하고, activation energy 가 증가하는 것을 관찰 할 수 있었다.

  • PDF

Design and Implementation of a Radiative Temperature Measurement System for a Flash Light (섬광의 복사온도 측정 장치의 설계 및 제작)

  • Jin, Jung-Ho;Han, Seungoh;Yang, Hee Won;Park, Seung-Man
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.30-37
    • /
    • 2015
  • The design and implementation of a radiative temperature measurement system for a flash light are carried out. Since a massive amount of energy is emitted within a very short time, it is impossible to measure the temperature of a flash with a conventional method. It is also irrelevant to measure one with an optical noncontact method. In this paper, a radiative temperature measurement system using the ratio of spectral radiances over mid- and long-wavelength infrared (IR) is designed and implemented. The implemented system utilizes optical bandpass filters to divide the wavelengths within the mid- and long-wavelength IR ranges, and pyroelectric IR detectors to measure the incident optical power of each wavelength-divided channel. It is shown that the measured radiative temperature of a flash is in the range of 1393 to 1455 K. This temperature-measurement system can be utilized to obtain information about the spectral radiance of a flash as a light source, which is of crucial importance to approaching the modeling and simulation of the various effects of a flash.