Compressibility of $FeS_{2}$

$FeS_{2}$의 압축성 연구

  • Kim, Young-Ho (Department of Earth and Environment Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Hwang, Gil-Chan (Department of Earth and Environment Sciences and Research Institute of Natural Science, Gyeongsang National University) ;
  • Cho, Hyen-Goo (Department of Earth and Environment Sciences and Research Institute of Natural Science, Gyeongsang National University)
  • 김영호 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 황길찬 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소) ;
  • 조현구 (경상대학교 자연과학대학 지구환경과학과 및 기초과학연구소)
  • Published : 2006.09.30

Abstract

Compression work on a pyrite powder has been carried out using energy dispersive X-ray diffraction (EDXRD) with Mao-Bell type diamond anvil cell (DAC) and synchrotron radiation(SR) at room temperature. It has been reported the bulk moduli of pyrite show the large variations depending on the experimental conditions as well as the apparatus used. Thus, two kinds of sample in different pressure transmitting media of both NaCl and MgO powder emerged in alcoholic fluids were subjected to measure their compressibilities. Bulk moduli thus obtained are 138.9 GPa and 198.2 GPa, respectively, and this result contradicts to the anticipated values according to the hydrostaticity conditions of the sample chamber. This might be due to the alcoholic fluids phase transition mainly with the side effects from the difference of both solid state detector (SSD) used and E*d value applied. All experiments were performed at the Beam Line 1B2 of Pohang Light Source (PLS).

황철석에 대한 압축성 연구를 다이아몬드 앤빌 기기 및 방사광을 이용하고 에너지분산 X-선회절법을 적용하여 상온에서 시행하였다. 황철석의 체적탄성률은 실험조건과 실험기기에 따라 매우 큰 변이를 보이고 있는데 이는 압력전달매체의 특성에 따른 것으로 알려져 있다. $FeS_{2}#1$(황철석+NaCl)과 $FeS_{2}#2$(황철석+MgO)에 대해 압력전달 매체로 각각 NaCl과 유체를 이용하여 체적탄성률 138.9 GPa와 198.2 GPa를 각각 얻었다. 이러한 값은 시료방의 압력상태에 따른 예측 결과치에 대치되는 것으로 그 원인은 압력전달액체의 상변이에 따른 것으로 추정되며 이외에 고상검출기의 차이, E*d값의 차이 등도 영향을 미친 것으로 판단된다. 모든 실험은 포항가속기연구소 1B2 빔라인에서 시행되었다.

Keywords

References

  1. Ahrens T.J. and Jeanloz R. (1987) Pyrite: shock compression, isentropic release, and the composition of the Earth's core, J. Geophys. Res., 92, 10363-10375 https://doi.org/10.1029/JB092iB10p10363
  2. Birch F. (1952) Elasticity and constitution of the Earth's interior, J. Geophys. Res., 57, 227-286 https://doi.org/10.1029/JZ057i002p00227
  3. Bridgman P.W. (1949) Linear compression to 30000 $kg/cm^2$, including relatively incompressible substances, Proc. Am. Acad. Arts Sci., 77, 189-234
  4. Chattopadhyay T. and Schnering H.G. von. (1985) High pressure X-ray diffraction study on $p-FeS_2$ and m-MsSz to 340 kbar: a possible high spin-low spin transition in $m-MsS_2$, J. Phys. Chem. Sol., 46, 113-116 https://doi.org/10.1016/0022-3697(85)90204-5
  5. Decker R. and Decker B. (1981) Volcanoes, Ch. 11, Origin of the sea and air, p244, Freeman
  6. Drickamer H.G., Lynch R.W. Clendenen R.L. and Perez-Albuene E.A. (1966) X-ray diffraction studies of the lattice parameters of solids under very high pressure, Sol. State Phys., 19, 135-229
  7. Hwang G.C. and Kim Y.H. (2005) A study of compressibility on a natural. almandine using synchrotron radiation, Jour. Mineral. Soc., Korea, 18(4), 249-258
  8. Jamieson J.C., Fritz J.N. and Manghnani M.H. (1982) Pressure measurement at high temperature in X-ray diffraction studies, Advances in Earth and Planetary Sciences, 12, 27-48
  9. Jephcoat A.P., Mao H.K. and Bell P.M. (1983) Pyrite: Hydrostatic compression to 40 GPa, AGU Transactions, EOS, 64(45), F847
  10. Jephcoat A.P. (1985) Hydrostatic compression studies on iron and pyrite to high pressures: the compression of the Earth's core and the equation of state of solid argon, PhD Thesis, John Hopkins Univ., Baltimore, Maryland
  11. Jephcoat A.P. and Olson P. (1987) Is the inner core of the Earth pure iron?, Nature, 325(22), 332-335 https://doi.org/10.1038/325332a0
  12. Mao H.K. and Bell P.M. (1979) Equation of state of MgO and ${\varepsilon}$-Fe under static pressure conditions, J. Geophys. Res., 84, 4533-4536 https://doi.org/10.1029/JB084iB09p04533
  13. Merkel S., Jephcoat A.P., Shu J., Mao H.K., Gillet P. and Hemley R.J. (2002) Equation of state, elasticity and shear strength of pyrite under high pressure, Phys. Chem. Minerals, 29, 1-9 https://doi.org/10.1007/s002690100207
  14. Sato-Sorensen Y. (1983) Phase transition and equations of state for the sodium halides: NaF, NaCl, NaBr and NaI, J. Geophys. Res., 88, 3543-3548 https://doi.org/10.1029/JB088iB04p03543
  15. Shen A.H., Bassett W.A. and Chou I.-M. (1992) Hydrothermal studies in a diamond anvil cell: Pressure determination using the equation of state of $H_2O$, High-Pressure Research: Application to Earth and Planetary Sciences, Syono Y. and Manghnani M.H.(eds), Terra Sci. Pub. Co, 61-70
  16. Simmons G. and Birch F. (1963) Elastic constants of pyrite, J. Appl. Phys., 34, 2736-2738 https://doi.org/10.1063/1.1729801