• Title/Summary/Keyword: Endo-xylanase

Search Result 45, Processing Time 0.03 seconds

Purification of an Xylanase from the Extracellular Xylanolytic Systems of Trichoderma viride and Hydrolysis of Xylan (Trichoderma viride 균체외 효소로 부터 Xylanase의 정제 및 Xylan의 분해)

  • Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.22-29
    • /
    • 1991
  • The endo-1,4-${\beta}$-xylanase was extracted and purified from the extracellular xylanolytic systems of Trichoderma viride. The crude enzyme was chromatographed with ion-exchange reins of DEAE Sepharose CL-6B, Sepharose, S-Sepharose CL-6B and the resulting xylanase was turned out to be a single protein as 20KD hy SDS-polyacrylamide gel electrophoresis. The xylooligomers were obtained from xylan by incubation with the purified xylanase up to 50%. The ${\beta}$-xylosidase lost its activity completely by incubation of crude enzyme for 24hr with buffer solution of pH 2.8 at $27^{\circ}C$. And also, the xylooligomers were obtained from xylan as a main product by incubation with the crude enzyme treated with acidic buffer.

  • PDF

Cloning, Sequencing, and Expression of the Gene Encoding a Multidomain Endo-$\beta$-1,4-Xylanase from Paenibacillus curdlanolyticus B-6, and Characterization of the Recombinant Enzyme

  • Waeonukul, Rattiya;Pason, Patthra;Kyu, Khin Lay;Sakka, Kazuo;Kosug, Akihiko;Mori, Yutaka;Ratanakhanokchai, Khanok
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • The nucleotide sequence of the Paenibacillus curdlanolyticus B-6 xyn10A gene, encoding a xylanase Xyn10A, consists of 3,828 nucleotides encoding a protein of 1,276 amino acids with a predicted molecular mass of 142,726 Da. Sequence analysis indicated that Xyn10A is a multidomain enzyme comprising nine domains in the following order: three family 22 carbohydrate-binding modules (CBMs), a family 10 catalytic domain of glycosyl hydrolases (xylanase), a family 9 CBM, a glycine-rich region, and three surface layer homology (SLH) domains. Xyn10A was purified from a recombinant Escherichia coli by a single step of affinity purification on cellulose. It could effectively hydrolyze agricultural wastes and pure insoluble xylans, especially low substituted insoluble xylan. The hydrolysis products were a series of short-chain xylooligosaccharides, indicating that the purified enzyme was an endo-$\beta$-1,4-xylanase. Xyn10A bound to various insoluble polysaccharides including Avicel, $\alpha$-cellulose, insoluble birchwood and oat spelt xylans, chitin, and starches, and the cell wall fragments of P. curdlanolyticus B-6, indicating that both the CBM and the SLH domains are fully functioning in the Xyn10A. Removal of the CBMs from Xyn10A strongly reduced the ability of plant cell wall hydrolysis. These results suggested that the CBMs of Xyn10A play an important role in the hydrolysis of plant cell walls.

Purification and Characterization of an Extracellular Xylanase of Bacillus stearothermophilus (Bacillus stearothermophilus 가 생산하는 Xylanase의 정제 및 특성)

  • 배성호;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.6
    • /
    • pp.592-597
    • /
    • 1991
  • An extracellular xylanase of Bacillus stearothemophilus was purified to a single protein through a sequency of operations including ammonium sulfate fractionation, DEAE Sepharose CL-6B ion exchange chromatography, Sephadex G-100 gel filtration and heat treatment. The purified enzyme had a moleular weight of 170, 000. the pH and temperature optima for the enzyme activity were pH 9.0 and $55^{\circ}C$, respectively. The activity was enhanced by $co^{2+} \; and\; Mn^{2+}$, and inhibited by $Hg^{2+}$. Pattern of hydrolysis demonstrated that the xylanase was an endo-splitting enzyme able to break down larchwood xylan at random giving xylobiose and xylotriose as the main end products.

  • PDF

Purification, Characterization and Chemical Modification of the Xylanase from Alkali-tolerant Bacillus sp. YA-14

  • Park, Young-Seo;Yum, Do-Young;Hahm, Byoung-Kwon;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • The xylanase from alkali-tolerant Bacillus sp. YA-14 was purified to homogeneity by CM-cellulose, Sephadex G-50, and hydroxyapatite column chromatographies. The molecular weight of the purified enzyme was estimated to be 20, 000 Da by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme slightly hydrolyzed carboxymethyl cellulose and Avicel, but did not hydrolyze soluble starch, dextran, pullulan, and ${\rho}-nitrophenyl-{\beta}$-D-xylopyranoside. The maximum degree of hydrolysis by enzyme for birchwood xylan and oat spelts xylan were 47 and 40%, respectively. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.03 mg/ml and 5.0 mg/ml, respectively. The activity of the xylanase was inhibited reversibly by $HgCl_2$, and showed competitive inhibition by N-bromosuccinimide, which probably indicates the involvement of tryptophan residue in the active center of the enzyme. The Xylanase was identified to be xylose-producing endo-type xylanase and did not show the enzymatic activities which cleave the branch point of the xylan structure.

  • PDF

Asparagine Residue at Position 71 is Responsible for Alkali-Tolerance of the Xylanase from Bacillus Pumilus A-30

  • Liu, Xiang-Mei;Qi, Meng;Lin, Jian-Aiang;Wu, Zhi-Hong;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.534-538
    • /
    • 2001
  • The xynA gene encoding an alikali-tolerant endo-1,4-${\beta}$-xylanase (XYN) was cloned from the alkalophilic Bacillus pumilus A-30. The nucleotide sequence of a 974-bp DNA fragment containing the xynA was determined. An ORF of 684 nucleotides that encoded a protein of 228 amino aicds was detected. Asparagine-71 of XYN from B. Pumilus A-30 showed to be highly conservative in alkaline xylanases of family G/11, upon comparing the amino acid sequences of 17 family G/11 xylanases. Site-directed mutation of N71D of the xynA gene resulted in a decrease of 12.4% in the specific acitivity and a significant decline in the enzyme activity in the alkaline pH range.

  • PDF

Biochemical Characterization of an Extracellular Xylanase from Aestuariibacter sp. PX-1 Newly Isolated from the Coastal Seawater of Jeju Island in Korea (대한민국 제주도 연안 해수에서 새롭게 분리한 Aestuariibacter sp. PX-1이 생산하는 자일라네이즈의 생화학적 특성)

  • Kim, Jong-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • The marine microorganism PX-1, which can hydrolyze xylan, was isolated from coastal sea water of Jeju Island, Korea. Based on the 16S rRNA gene sequence and chemotaxonomy analysis, PX-1 was identified as a species of the genus Aestuariibacter and named Aestuariibacter sp PX-1. From the culture broth of PX-1, an extracellular xylanase was purified to homogeneity through ammonium sulfate precipitation and subsequent adsorption chromatography using insoluble xylan. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography estimated the molecular weight of the purified putative xylanase (XylA) as approximately 64 kDa. XylA showed xylanase activity toward beechwood xylan, with a maximum enzymatic activity at pH 6.0 and 45℃. Through thin-layer chromatographic analysis of the xylan hydrolysate produced by XylA, it was confirmed that XylA is an endo-type xylanase that decomposes xylan into xylose and xyloligosaccharides of various lengths. The Km and Vmax values of XylA for beechwood xylan were 27.78 mM and 78.13 μM/min, respectively.

Purification and Characterization of Clostridium thermocellum Xylanase from Recombinant Escherichia coli

  • Koo, Bon-Joon;Oh, Hwa-Gyun;Cho, Ki-Haeng;Yang, Chang-Kun;Jung, Kyung-Hwa;Ryu, Dai-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.414-419
    • /
    • 1996
  • The xylnX gene encoding a xylanase from Clostridium thermocellum ATCC27405 was cloned in the plasmid pJH27, an E. coli-Bacillus shuttle vector and the resultant recombinant plasmid, pJX18 was transformed into E. coli HB101. The overexpressed xylanase was found to be secreted into the periplasmic space of the recombinant E. coli cells. The crude enzyme was obtained by treating the E. coli cells with lysozyme, and purified by DEAE-Sepharose column chromatography. Molecular wieght of the xylanase was estimated to be 53 kDa by gel filtration. The pI value was determined to be pH 8.8. The N-terminal sequence of the enzyme protein was Asp-Asp-Asn-Asn-Ala-Asn-Leu-Val-Ser-Asn which was considered to be the sequence of that of the mature form protein. The Km value of the enzyme for oat spelt xylan was calculated to be 2.63 mg/ml and the Vmax value was $0.47 {\mu}mole/min$. The xylanase had a pH optimum for its activity at pH 5.4 and a temperature optimum at $60^{\circ}C$. The enzyme hydrolyzed xylan into xylooligosaccharides which were composed mainly of xylobiose (40%) and xyloltriose (12%) after 5 hour reaction. This result indicates that the xylanase from C. thermocellum ATCC27405 is an endo-acting enzyme.

  • PDF

Production of Xylooligo-Saccharides and Purification of Extracellular Xylanase from Streptomyces chibaensis J-59 (방선균 Streptomyces chibaensis J-59 Xylanase의 정제 및 자일로 올리고당(Xylooligo-Saccharides)의 생산)

  • Joo, Gil-Jae;Rhee, In-Koo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.14
    • /
    • pp.111-122
    • /
    • 1996
  • S. chibaensis J-59 produced an extracellular xylanase in a CSL medium composed of 1.5% com steep liquor, 0.1% $MgSO_4{\cdot}7H_2O$, 0.012% $CoCl_2{\cdot}6H_2O$, and 0.15% glucose containing xylan. but it did not produce in the culture medium containing xylose. The production of enzyme reached to a maximum level (0.83 uints/ml) when bacteria were cultured in 2.5 l jar fermentor for 48hrs at $30^{\circ}C$ and pH 7.0. Furthermore, S. chibaensis J-59 produced an intracellular glucose isomerase in a medium containing xylan and/or xylose. Xylanase was purified 29-fold over the culture supernatants of S. chibaensis J-59 by ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, and gel filtration on Sephadex G-200. The purified enzyme is a monomeric enzyme with a native molecular mass of 25 kDa and a subunit molecular mass of 25 kDa. The purified enzyme requires $Mg^{2+}$ for activity, $Ca^{2+}$, $Co^{2+}$ is not an inhibitor but inhibit by $Fe^{3+}$, $Hg^{2+}$, and $Cu^{2+}$, sodium dodecyl sulfate, N-bromosuccinide. Pattern of hydrolysis demonstrated that the xylanase was an endo-splitting enzyme able to break down birchwood xylan at random giving xylobiose, xylotriose and xylotetrose as the main end products.

  • PDF

Purification and Characterization of Two Thermostable Xylanases from Paenibacillus sp. DG-22

  • Lee, Yong-Eok;Lim, Pyung-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1014-1021
    • /
    • 2004
  • Two thermostable xylanases, designated XynA and XynB, were purified to homogeneity from the culture supernatant of Paenibacillus sp. DG-22 by ion-exchange and gel-filtration chromatography. The molecular masses of xylanases A and B were 20 and 30 kDa, respectively, as determined by SDS-PAGE, and their isoelectric points were 9.1 and 8.9, respectively. Both enzymes had similar pH and temperature optima (pH 5.0-6.5 and $70^{\circ}C$), but their stability at various temperatures differed. Xylanase B was comparatively more stable than xylanase A at higher temperatures. Xylanases A and B differed in their $K_m$ and $V_{max}$ values. XynA had a $K_m$ of 2.0 mg/ml and a $V_{max}$ of 2,553 U/mg, whereas XynB had a K_m$ of 1.2 mg/ml and a $V_{max}$, of 754 U/mg. Both enzymes were endo-acting, as revealed by their hydrolysis product profiles on birchwood xylan, but showed different modes of action. Xylotriose was the major product of XynA activity, whereas XynB produced mainly xylobiose. These enzymes utilized small oligosaccharides such as xylotriose and xylotetraose as substrates, but did not hydrolyzed xylobiose. The amino terminal sequences of XynA and XynB were determined. Xylanase A showed high similarity with low molecular mass xylanases of family 11.

Isolation and Characterization of a Xylanolytic Bacterium, Bacillus sp. MX47 (Xylanase 생산균 Bacillus sp. MX47의 분리 및 동정)

  • Chi, Won-Jae;Park, Da Yeon;Park, Jae-Seon;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.419-423
    • /
    • 2012
  • A xylanolytic bacterial strain, MX47, was isolated from rotting plant matter in soil. The strain was aerobic and gram positive, and grew between pH 6.0 and 11.0. Cells were susceptible to thiostrepton and chloramphenicol. The major fatty acids (>3%) comprised 64.55% of iso-$C_{15:0}$, 22.76% of anteiso-$C_{15:0}$, and 3.92% of iso-$C_{17:0}$. The G/C content of the DNA was 44.15 mol%. The predominant respiratory quinone was menaquinone 7 (MK-7). Searches for 16S rRNA gene sequence similarity as well as phylogenetic analyses strongly suggested that the strain should be classified to the genus Bacillus. However, its biochemical characteristics, including acid production and enzyme activities, are different from those of other Bacillus strains in the same clade, and therefore, we propose the name Bacillus sp. MX47.