참고문헌
- Adelsberger, H., C. Hertel, E. Glawischnig, V. V. Zverlov, and W. H. Schwarz. 2004. Enzyme system of Clostridium stercorarium for hydrolysis of arabinoxylan: Reconstitution of the in vivo system from recombinant enzymes. Microbiology 150: 2257-2266 https://doi.org/10.1099/mic.0.27066-0
- Ali, M. K., M. Fukumura, K. Sakano, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya. 1999. Cloning, sequencing, and expression of the gene encoding the Clostridium stercorarium xylanase C in Escherichia coli. Biosci. Biotechnol. Biochem. 63: 1596-1604 https://doi.org/10.1271/bbb.63.1596
- Ali, M. K., T. Kimura, K. Sakka, and K. Ohmiya. 2001. The multidomain xylanase Xyn10B as a cellulose-binding protein in Clostridium stercorarium. FEMS Microbiol. Lett. 198: 79-83 https://doi.org/10.1111/j.1574-6968.2001.tb10622.x
- Ali, M. K., H. Hayashi, S. Karita, M. Goto, T. Kimura, K. Sakka, and K. Ohmiya. 2001. Importance of the carbohydrate-binding module of Clostridium stercorarium Xyn10B to xylan hydrolysis. Biosci. Biotechnol. Biochem. 65: 41-47 https://doi.org/10.1271/bbb.65.41
- Araki, R., M. K. Ali, M. Sakka, T. Kimura, K. Sakka, and K. Ohmiya. 2004. Essential role of the family-22 carbohydratebinding modules for β-1,3-1,4-glucanase activity of Clostridium stercorarium Xyn10B. FEBS Lett. 561: 155-158 https://doi.org/10.1016/S0014-5793(04)00160-7
- Black, G. W., J. E. Rixon, J. H. Clarke, G. P. Hazlewood, M. K. Theodorou, P. Morris, and H. J. Gilbert. 1996. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem. J. 319: 515-520 https://doi.org/10.1042/bj3190515
- Boraston, A. B., A. L. Creagh, M. M. Alam, J. M. Kormos, P. Tomme, C. A. Haynes, R. A. J. Warren, and D. G. Kilburn. 2001. Binding specificity and thermodynamics of a family 9 carbohydratebinding module from Thermotoga maritima xylanase 10A Biochemistry 40: 6240-6247 https://doi.org/10.1021/bi0101695
- Charnock, S. J., D. N. Bolam, J. P. Turkenburg, H. J. Gilbert, L. M. A. Ferreira, G. J. Davies, and C. M. A. Fontes. 2000. The X6 "thermostabilizing” domains of xylanases are carbohydratebinding modules: Structure and biochemistry of the Clostridium thermocellum X6b domain. Biochemistry 39: 5013-5021 https://doi.org/10.1021/bi992821q
- Devillard, E., C. Bera-Maillet, H. J. Flint, K. P. Scott, C. J. Newbold, R. J. Wallace, J. P. Jouany, and E. Forano. 2003. Characterization of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydratebinding module that binds to cellulose. Biochem. J. 373: 495-503 https://doi.org/10.1042/BJ20021784
- Feng, J. X., S. Karita, E. Fujino, T. Fujino, T. Kimura, K. Sakka, and K. Ohmiya. 2000. Cloning, sequencing, and expression of the gene encoding a cell-bound multi-domain xylanase from Clostridium josui, and characterization of the translated product. Biosci. Biotechnol. Biochem. 64: 2614-2624 https://doi.org/10.1271/bbb.64.2614
- Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial cellulases and xylanases. J. Gen. Microbiol. 139: 187-194 https://doi.org/10.1099/00221287-139-2-187
- Gill, J., J. E. Rixon, D. N. Bolam, S. McQueen-Mason, P. J. Simpson, M. P. Williamson, G. P. Hazlewood, and H. J. Gilbert. 1999. The type II and X cellulose-binding domains of Pseudomonas xylanase A potentiate catalytic activity against complex substrates by a common mechanism. Biochem. J. 342:473-480 https://doi.org/10.1042/0264-6021:3420473
- Henrissat, B. and A. Bairoch. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem. J. 316: 695-696 https://doi.org/10.1042/bj3160695
-
Henrissat, B. and P. Coutinho. [Online] Glycosyl hydrolase families. Architecture et Fonction des Macromol
$\acute{e}$ ules Biologiques, CNRS, Marseille, France. http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf.html - Heo, S., J. Kwak, H.-W. Oh, D.-S. Park, K. S. Bae, D. H. Shin, and H.-Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759
- Irwin, D., E. D. Jung, and D. B. Wilson. 1994. Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 60: 763-770
- Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, N. Okai, N. Abe, and Y. Kamio. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978 https://doi.org/10.1128/AEM.69.12.6969-6978.2003
- Kosugi, A., K. Murashima, Y. Tamaru, and R. H. Doi. 2002. Cellsurface anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J. Bacteriol. 184:884-888 https://doi.org/10.1128/jb.184.4.884-888.2002
- Kubata, B. K., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1994. Purification and characterization of Aeromonas caviae ME-1 xylanase V, which produces exclusively xylobiose from xylan. Appl. Environ. Microbiol. 60: 531-535
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
- Lee, Y.-E., S. E. Lowe, and J. G. Zeikus. 1993. Gene cloning, sequencing, and biochemical characterization of endoxylanase from Thermoanaerobacterium saccharolyticum B6A-RI. Appl. Environ. Microbiol. 59: 3134-3137
- Lee, Y.-E., S. E. Lowe, B. Henrissat, and J. G. Zeikus. 1993. Characterization of the active site and thermostability regions of endoxylanase from Thermoanaerobacterium saccharolyticum B6ARI. J. Bacteriol. 175: 5890-5898 https://doi.org/10.1128/jb.175.18.5890-5898.1993
- Lee, H.-J., D.-J. Shin, N. C. Cho, H. O. Kim, S. Y. Shin, S. Y. Im, H. B. Lee, S. B. Chun, and S. Bai. 2000. Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol. Lett. 22: 387-392 https://doi.org/10.1023/A:1005676702533
- Lee, J.-H. and S. H. Choi. 2006. Xylanase production by Bacillus sp. A-6 isolated from rice bran. J. Microbiol. Biotechnol. 16:1856-1861
- Lee, T. H., P. O. Lim, and Y.-E. Lee. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36
- Liu, S.-Y., F. C. Gherardini, M. Matuschek, H. Bahl, and J. Wiegel. 1996. Cloning, sequencing, and expression of the gene encoding a large S-layer-associated endoxylanase from Thermoanaerobacterium sp. strain JW/SL-YS 485 in Escherichia coli. J. Bacteriol. 178: 1539-1547 https://doi.org/10.1128/jb.178.6.1539-1547.1996
- Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275
- Lupas, A., H. Enhgelhardt, J. Peters, U. Santarius, S. Volker, and W. Baumeister. 1994. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233 https://doi.org/10.1128/jb.176.5.1224-1233.1994
- Matuschek, M., K. Sahm, A. Zibat, and H. Bahl. 1996. Characterization of genes from Thermoanaerobacterium thermosulfurigenes EM1 that encode two glycosyl hydrolases with conserved S-layer-like domains. Mol. Gen. Genet. 252:493-496
-
Meissner, K., D. Wassenberg, and W. Liebl. 2000. The thermostabilizing domain of the modular xylanase Xyn10A of Thermotoga maritima represents a novel type of binding domain with affinity for soluble xylan and mixed-linkage
$\beta$ -1,3/$\beta$ -1,4-glucan. Mol. Microbiol. 36: 898-912 https://doi.org/10.1046/j.1365-2958.2000.01909.x -
Mesnage, St
$\acute{e}$ phane., T. Fontaine, T$\hat{a}$ m Mignot, M. Delepierre, Mich$\grave{e}$ le Mock, and Agn$\grave{e}$ s. Fouet. 2000. Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19: 4473-4484 https://doi.org/10.1093/emboj/19.17.4473 - Millward-Sadler, S. J., D. M. Poole, B. Henrissat, G. P. Hazlewood, J. H. Clarke, and H. J. Gilbert. 1994. Evidence for a general role for high-affinity noncatalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 11: 375-382 https://doi.org/10.1111/j.1365-2958.1994.tb00317.x
- Morris, D. D., M. D. Gibbs, M. Ford, J. Thomas, and P. L. Bergquist. 1999. Family 10 and 11 xylanase genes from Caldicellulosiruptor sp. strain Rt69B.1. Extremophiles 3: 103-111 https://doi.org/10.1007/s007920050105
-
Moure, Andr
$\acute{a}$ s., P. Gull$\acute{o}$ n, H. Dom$\acute{i}$ nguez, and J. C. Paraj$\acute{o}$ . 2006. Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Proc. Biochem. 41: 1913-1923 https://doi.org/10.1016/j.procbio.2006.05.011 - Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153: 375-380
- Ohmiya, K., K. Sakka, S. Karita, and T. Kimura. 1997. Structure of cellulases and their applications. Biotechnol. Genet. Eng. Rev. 14:365-414 https://doi.org/10.1080/02648725.1997.10647949
-
Okazaki, F., Y. Tamaru, S. Hashikawa, Y.-T. Li, and T. Araki. 2002. Novel carbohydrate-binding module of
$\beta$ -1,3-xylanase from a marine bacterium, Alcaligenes sp. strain XY-234. J. Bacteriol. 184: 2399-2403 https://doi.org/10.1128/JB.184.9.2399-2403.2002 - Pason, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O.-H. Jhee, J. Kang, et al. 2006. Selection of multienzyme complexproducing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275
- Pason, P., K. L. Kyu, and K. Ratanakhanokchai. 2006. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Appl. Environ. Microbiol. 72: 2483-2490 https://doi.org/10.1128/AEM.72.4.2483-2490.2006
- Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
- St. John, F. J., J. D. Rice, and J. F. Preston. 2006. Paenibacillus sp. strain JDR-2 and XynA1: A novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72: 1496-1506 https://doi.org/10.1128/AEM.72.2.1496-1506.2006
- Sun, J. L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya. 1998. Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-68 https://doi.org/10.1016/S0922-338X(97)80355-8
- Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
- Sunna, A., M. D. Gibbs, and P. L. Bergquist. 2000. A novel thermostable multidomain β-1,4-xylanase from Caldibacillus cellulovorans and effect of its xylan-binding domain on enzyme activity. Microbiology 146: 2947-2955 https://doi.org/10.1099/00221287-146-11-2947
- Tsujibo, H., T. Ohtsuki, T. Iio, I. Yamazaki, K. Miyamoto, M. Sugiyama, and Y. Inamori. 1997. Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 63: 661-664
- Whistler, R. L. and E. L. Richard. 1970. Hemicellulose in the carbohydrates, pp. 447-469. In W. Pigman and D. Horton (eds.), The Carbohydrates: Chemistry and Biochemistry, 2nd Ed. Academic Press, New York, NY
- Zemnukhova, L. A., S. V. Tomshich, V. A. Mamontova, N. A. Komandrova, G. A. Fedorishcheva, and V. I. Sergienko. 2004. Composition and properties of polysaccharides from rice husk. Russ. J. Appl. Chem. 77: 1883-1887 https://doi.org/10.1007/s11167-005-0181-7
피인용 문헌
- Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6 vol.85, pp.3, 2010, https://doi.org/10.1007/s00253-009-2117-2
- Carbohydrate-binding domains: multiplicity of biological roles vol.85, pp.5, 2009, https://doi.org/10.1007/s00253-009-2331-y
- A Cellulolytic and Xylanolytic Enzyme Complex from an Alkalothermoanaerobacterium, Tepidimicrobium xylanilyticum BT14 vol.20, pp.5, 2010, https://doi.org/10.4014/jmb.0911.11025
-
Characterization of a Paenibacillus woosongensis
${\beta}$ -Xylosidase/${\alpha}$ -Arabinofuranosidase Produced by Recombinant Escherichia coli vol.20, pp.12, 2009, https://doi.org/10.4014/jmb.1010.10040 - Partial Characterization of α-Galactosidic Activity from the Antarctic Bacterial Isolate, Paenibacillus sp. LX-20 as a Potential Feed Enzyme Source vol.25, pp.6, 2009, https://doi.org/10.5713/ajas.2011.11501
- Paenibacillus woosongensis의 Xylanase 유전자 클로닝과 특성분석 vol.48, pp.2, 2009, https://doi.org/10.7845/kjm.2012.48.2.141
- Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy vol.58, pp.2, 2013, https://doi.org/10.1007/s12223-012-0184-8
-
An
${\beta}$ -1,4-Xylanase with Exo-Enzyme Activity Produced by Paenibacillus xylanilyticus KJ-03 and Its Cloning and Characterization vol.23, pp.3, 2013, https://doi.org/10.4014/jmb.1212.12017 - Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge vol.29, pp.2, 2009, https://doi.org/10.1007/s11274-012-1186-z
-
용인 함박산 토양에서 분리한 Paenibacillus sp. HX-1의 동정과 endo-
${\beta}$ -1,4-xylanase 생산 증가를 위한 배지최적화 vol.41, pp.3, 2009, https://doi.org/10.4014/kjmb.1304.04001 - Cloning and Characterization of a Multidomain GH10 Xylanase from Paenibacillus sp. DG-22 vol.24, pp.11, 2014, https://doi.org/10.4014/jmb.1407.07077
- Substitution of the Echistatin Amino Acid Motif RGDD with KGDW Enhances Inhibition of Platelet Aggregation and Thrombogenesis vol.21, pp.4, 2009, https://doi.org/10.1007/s10989-015-9475-7
- A Novel Multi-domain High Molecular, Salt-Stable Alkaline Xylanase from Alkalibacterium sp. SL3 vol.7, pp.None, 2009, https://doi.org/10.3389/fmicb.2016.02120
- Paenibacillus amylolyticus 유래 xylanase GH10 및 GH30의 xylan 가수분해 특성 vol.52, pp.4, 2009, https://doi.org/10.7845/kjm.2016.6068
- Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon vol.13, pp.6, 2009, https://doi.org/10.1038/s41396-019-0363-6
- Production, characteristics, and biotechnological applications of microbial xylanases vol.103, pp.21, 2019, https://doi.org/10.1007/s00253-019-10108-6
- Extremophile – An Adaptive Strategy for Extreme Conditions and Applications vol.21, pp.2, 2009, https://doi.org/10.2174/1389202921666200401105908