DOI QR코드

DOI QR Code

Quantifiable Downregulation of Endogenous Genes in Agaricus bisporus Mediated by Expression of RNA Hairpins

  • Costa, Ana S.M.B. (Warwick HRI, University of Warwick) ;
  • Thomas, D. John I. (Warwick HRI, University of Warwick) ;
  • Eastwood, Daniel (Warwick HRI, University of Warwick) ;
  • Cutler, Simon B. (Warwick HRI, University of Warwick) ;
  • Bailey, Andy M. (School of Biological Sciences, University of Bristol) ;
  • Foster, Gary D. (School of Biological Sciences, University of Bristol) ;
  • Mills, Peter R. (Warwick HRI, University of Warwick) ;
  • Challen, Michael P. (Warwick HRI, University of Warwick)
  • Received : 2008.06.27
  • Accepted : 2008.08.07
  • Published : 2009.03.31

Abstract

Functional gene studies in the cultivated white button mushroom Agaricus bisporus have been constrained by the absence of effective gene-silencing tools. Using two endogenous genes from A. bisporus, we have tested the utility of dsRNA hairpin constructs to mediate downregulation of specific genes. Hairpin constructs for genes encoding orotidine 5'-monophosphate decarboxylase (URA3) and carboxin resistance (CBX) were introduced into A. bisporus using Agrobacteriummediated transfection. Although predicted changes in phenotype were not observed in vitro, quantitative-PCR analyses indicated unambiguously that transcripts in several transformants were substantially reduced compared with the non-transformed controls. Interestingly, some hairpin transformants exhibited increased transcription of target genes. Our observations show that hairpin transgenic sequences can mediate downregulation of A. bisporus endogenous genes and that the technology has the potential to expedite functional genomics of the mushroom.

Keywords

References

  1. Bundock, P., K. Mr$\acute{o}$czek, A. Winkler, H. Steensma, and P. Hooykaas. 1999. T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol. Gen. Genet. 261: 115-121 https://doi.org/10.1007/s004380050948
  2. Burns, C., K. E. Gregory, M. Kirby, M. K. Cheung, M. Riequelme, T. J. Elliott, M. P. Challen, A. M. Bailey, and G. D. Foster. 2005. Efficient GFP expression in the mushroom Agaricus bisporus and Coprinus cinereus requires introns. Fungal Genet. Biol. 42:191-199 https://doi.org/10.1016/j.fgb.2004.11.005
  3. Burns, C., K. M. Leach, T. J. Elliott, M. P. Challen, G. D. Foster, and A. Bailey. 2006. Evaluation of Agrobacteriummediated transformation of Agaricus bisporus using a range of promoters linked to hygromycin resistance. Mol. Biotechnol. 32:129-138 https://doi.org/10.1385/MB:32:2:129
  4. Challen, M. P., H. S. Sodhi, G. R. Bhattiprolu, and T. J. Elliott. 1996. Molecular cloning and characterization of the Agaricus bisporus TRP2 gene, pp. 47-56. In: Royse, D. J. (ed.), Mushroom Biology and Mushroom Products. Penn State, U.S.A.
  5. Challen, M. and T. Elliott. 1987. Production and evaluation of fungicide resistant mutants in the cultivated mushroom Agaricus bisporus. Trans. Br. Mycol. Soc. 88: 433-439 https://doi.org/10.1016/S0007-1536(87)80026-8
  6. Challen, M. P., K. E. Gregory, S. Sreenivasaprasad, C. C. Rogers, S. B. Cutler, D. C. Diaper, T. J. Elliott, and G. D. Foster. 2000. Transformation technologies for mushrooms. Mushroom Sci. 15: 165-172
  7. Challen, M. P., R. W. Kerrigan, and P. Callac. 2003. A phylogenetic reconstruction and emendation of Agaricus section Duploannulatae. Mycologia 95: 61-73 https://doi.org/10.2307/3761962
  8. Chen, X., M. Stone, C. Schlagnhaufer, and C. P. Romaine. 2000. A fruiting body tissue method for efficient Agrobacteriummediated transformation of Agaricus bisporus. Appl. Environ. Microbiol. 66: 4510-4513 https://doi.org/10.1128/AEM.66.10.4510-4513.2000
  9. Costa, A. M. S. B. 2007. Gene silencing strategies for functional genomics in homobasidiomycetes. PhD Thesis, University of Bristol, U.K.
  10. Costa, A. M. S. B., P. R. Mills, A. Bailey, G. D. Foster, and M. P. Challen. 2008. Oligonucleotide sequences forming selfcomplementary hairpins can expedite the down-regulation of Coprinopsis cinerea genes. J. Microbiol. Methods, doi:10.1016/j.mimet.2008.06.006
  11. De Groot, M., P. Bundock, P. Hooykaas, and A. Beijersbergen. 1998. Agrobacterium-mediated transformation of filamentous fungi. Nat. Biotechnol. 16: 839-842 https://doi.org/10.1038/nbt0998-839
  12. De Jong, J., H. Deelstra, H. W$\ddot{o}$sten, and L. Lugones. 2006. RNA-mediated gene silencing in monokaryons and dikaryons of Schizophyllum commune. Appl. Environ. Microbiol. 72: 1267-1269 https://doi.org/10.1128/AEM.72.2.1267-1269.2006
  13. D$\acute{i}$az M$\acute{i}$nguez, Jos$\acute{e}$M.,E.A. Iturriaga, E. P. Benito, L. M. Corrochano, and A. P. Elsava. 1990. Isolation and molecular analysis of the orotidine 5' monophosphate decarboxylase gene (pyrG) of Phycomyces blakesleeanus. Mol. Gen. Genet. 224:269-278 https://doi.org/10.1007/BF00271561
  14. Eastwood, D. C., M. P. Challen, C. Zhang, H. Jenkins, J. Henderson, and K. S. Burton. 2008. Hairpin-mediated downregulation of the urea cycle enzyme argininosuccinate lyase in Agaricus bisporus. Mycol. Res. 112: 708-716 https://doi.org/10.1016/j.mycres.2008.01.009
  15. Froeliger, E. H., R. C. Ullrich, and C. P. Novotny. 1989. Sequence analysis of the URA1 gene encoding orotidine-5'-monophosphate decarboxylase of Schizophyllum commune. Gene 83: 387-393 https://doi.org/10.1016/0378-1119(89)90127-3
  16. Goldoni, M., G. Azzalin, G. Macino, and C. Cogoni. 2004. Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet. Biol. 41: 1016-1024 https://doi.org/10.1016/j.fgb.2004.08.002
  17. Gouka, R. J., C. Gerk, P. J. J. Hooykaas, P. Bundock, W. Musters, C. T. Verrips, and M. J. A. de Groot. 1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat. Biotechnol. 17: 598-601 https://doi.org/10.1038/9915
  18. Harmsen, M. C., F. H. J. Schuren, S. M. Moukha, C. M. van Zuilen, P. J. Punt, and J. G. H. Wessels. 1992. Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr. Genet. 22: 447-454 https://doi.org/10.1007/BF00326409
  19. Hellens, R., P. Mullineaux, and H. Klee. 2000. A guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 54: 446-451
  20. Heneghan, M. N., A. M. S. Costa, M. P. Challen, P. R. Mills, A. Bailey, and G. D. Foster. 2007. A comparison of methods for successful triggering of gene silencing in Coprinopsis cinerea. Mol. Biotechnol. 35: 283-296 https://doi.org/10.1007/BF02686014
  21. Keon, J. P., J. W. Owen, and J. A. Hargreaves. 1999. Lack of evidence for antisense suppression in the fungal plant pathogen Ustilago maydis. Nucleic Acid Drug Dev. 9: 101-104 https://doi.org/10.1089/oli.1.1999.9.101
  22. Lazo, G. R., P. A. Stein, and R. A. Ludwig. 1991. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Nat. Biotechnol. 9: 963-967 https://doi.org/10.1038/nbt1091-963
  23. Leach, K. A. 2004. Homobasidiomycete transformation: Agrobacterium methodologies and marker gene development in Agaricus and Coprinus. PhD Thesis, Coventry University, U.K.
  24. Leach, K., V. Odon, C. Zhang, H. K. Kim, J. Hederson, P. Warner, M. Challen, and T. Elliott. 2004. Progress in Agaricus bisporus transformation: Agrobacterium methodologies and development of novel marker genes. Mushroom Sci. 16: 93-102
  25. Li, L. C., S. T. Okino, H. Zhao, D. Pookot, R. F. Place, S. Urakami, H. Enokida, and R. Dahiya. 2006. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl. Acad. Sci. U.S.A. 103: 17337-17342 https://doi.org/10.1073/pnas.0607015103
  26. Mikosch, T. S. P., B. Lavrijssen, A. S. M. Sonnenberg, and L. van Griensven. 2001. Transformation of the cultivated mushroom Agaricus bisporus (Lange) using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 39: 35-39 https://doi.org/10.1007/s002940000178
  27. Mills, P., J. Thomas, M. Sergeant, A. Costa, P. D. Collopy, A. Bailey, G. Foster, and M. Challen. 2008. Interactions between Agaricus bisporus and the pathogen Verticillium fungicola, pp. 1-17. In: S. V. Avery, M. Stratford, and P. Van West (eds.), Stress in Yeasts and Filamentous Fungi. The British Mycological Society, Academic Press, Elsevier Ltd, U.K.
  28. Namekawa, S., K. Iwabata, H. Sugawara, F. Hamada, A. Koshiyama, H. Chiku, T. Kamada, and K. Sakaguchi. 2005. Knock down of LIM15/DMC1 in the mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing. Microbiology 151: 3669-3678 https://doi.org/10.1099/mic.0.28209-0
  29. Nakayashiki, H., S. Hanada, N. Quoc, N. Katodani, Y. Tosa, and S. Mayama. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet. Biol. 42: 275-283 https://doi.org/10.1016/j.fgb.2005.01.002
  30. Punt, P. J., R. P. Oliver, M. A. Dingemanse, P. H. Pouwels, and C. A. M. J. J. van den Hondel. 1987. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117-124 https://doi.org/10.1016/0378-1119(87)90164-8
  31. Raper, C. A., J. R. Raper, and R. E. Miller. 1972. Genetic analysis of the life cycle of Agaricus bisporus. Mycologica 64:1088-1117 https://doi.org/10.2307/3758075
  32. Romaine, C. P. 2005. Transgenic breeding of Agaricus bisporus:The next frontier. Acta Edulis Fungi (Suppl.) 12: 174-184
  33. Smith, N. A., S. P. Singh, M. B. Wang, P. A. Stoutjesdijk, A. G. Green, and P. M. Waterhouse. 2000. Gene expression: Total silencing by intron-spliced hairpin RNAs. Nature 407: 319-320 https://doi.org/10.1038/35030305
  34. W$\ddot{a}$lti, M., C. Villalba, R. Buser, A. Grunler, M. Aebi, and M. K$\ddot{u}$nzler. 2006. Targeted gene silencing in the model mushroom Coprinopsis cinerea (Coprinus cinereus) by expression of homologous hairpin RNAs. Eukaryot. Cell 5: 732-744 https://doi.org/10.1128/EC.5.4.732-744.2006
  35. Zwiers, L. H. and M. A. De Waard. 2001. Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr. Genet. 39:388-393 https://doi.org/10.1007/s002940100216

Cited by

  1. RNA silencing in fungi vol.5, pp.6, 2009, https://doi.org/10.1007/s11515-010-0550-3
  2. RNAi as a potential tool for biotechnological applications in fungi vol.89, pp.3, 2009, https://doi.org/10.1007/s00253-010-2928-1
  3. The Development and Application of a Multiple Gene Co-Silencing System Using Endogenous URA3 as a Reporter Gene in Ganoderma lucidum vol.7, pp.8, 2009, https://doi.org/10.1371/journal.pone.0043737
  4. Evolution of RNA interference proteins dicer and argonaute in Basidiomycota vol.105, pp.6, 2009, https://doi.org/10.3852/13-171
  5. Induction of lcc2 expression and activity by Agaricus bisporus provides defence against Trichoderma aggressivum toxic extracts vol.8, pp.6, 2015, https://doi.org/10.1111/1751-7915.12277
  6. Functional analysis of Agaricus bisporus serine proteinase 1 reveals roles in utilization of humic rich substrates and adaptation to the leaf‐litter ecological niche vol.18, pp.12, 2009, https://doi.org/10.1111/1462-2920.13350
  7. Construction and application of a gene silencing system using a dual promoter silencing vector in Hypsizygus marmoreus vol.57, pp.1, 2009, https://doi.org/10.1002/jobm.201600291
  8. A silver bullet in a golden age of functional genomics: the impact of Agrobacterium -mediated transformation of fungi vol.4, pp.None, 2009, https://doi.org/10.1186/s40694-017-0035-0
  9. Structure and properties of AB21, a novel Agaricus bisporus protein with structural relation to bacterial pore‐forming toxins vol.86, pp.9, 2018, https://doi.org/10.1002/prot.25522
  10. Further Biochemical Profiling of Hypholoma fasciculare Metabolome Reveals Its Chemogenetic Diversity vol.9, pp.None, 2009, https://doi.org/10.3389/fbioe.2021.567384