• Title/Summary/Keyword: Elemental Carbon

Search Result 381, Processing Time 0.027 seconds

New Cryptand Complexes of Lanthanides(Ⅲ) and Dioxouranium(Ⅵ) Nitrates

  • Oh-Jin Jung;Chil-Nam Choi;Hak-Jin Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.130-137
    • /
    • 1991
  • The following new cryptand 221 complexes of lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate have been synthesized: $(Ln(C_{16}H_{32}N_2O_5)(H_2O)_2(NO_3)_3\ and \((UO_2)_2(C_{16}H_{32}N_2O_5)(H_2O)_4(NO_3)_4$. These complexes have been identified by elemental analysis, moisture titration, conductivity measurements and various spectroscopic techniques. The proton and carbon-13 NMR as well as calorimetric measurements were used to study the interaction of cryptand 221 with La(Ⅲ), Pr(Ⅲ ), Ho(Ⅲ) and $UO_2(Ⅱ)$ ions in nonaqueous solvents. The bands of metal-oxygen atoms, metal-nitrogen atoms and O-U-O in the IR spectra shift upon complexation to lower frequencies, and the vibrational spectra ({\delta}NMN$) of metal-amide complexes in the crystalline state exhibit lattice vibrations below 300 $cm^{-1}$. The NMR spectra of the lanthanides(Ⅲ) and dioxouranium(Ⅵ) nitrate complexes in nonaqueous solvents are quite different, indicating that the ligand exists in different conformation, and also the $^1H$ and $^{13}C-NMR$ studies indicated that the nitrogen atom of the ring has greater affinity to metal ions than does the oxygen atom, and the planalities of the ring are lost by complexation with metal ions. Calorimetric measurements show that cryptand 221 forms more stable complexes with $La^{3+}$ and $Pr^{3+}$ ions than with $UO^{22+}$ ion, and $La^{3+}/Pr^{3+}$ and $UO^{22+}/Pr^{3+}$ selectivity depends on the solvents. These changes on the stabilities are dependent on the basicity of the ligand and the size of the metal ions. The absorption band (230-260 nm) of the complex which arises from the direct interaction of macrocyclic donor atoms with the metal ion is due to n-{\delta}*$ transition and also that (640-675 nm) of $UO^{22+}$-cryptand 221 complex, which arises from interaction between two-dioxouranium(Ⅵ) ions in being out of cavity of the ligand ring is due to d-d* transition.

Efficiency of Poultry Manure Biochar for Stabilization of Metals in Contaminated Soil (계분 바이오차를 이용한 토양 중금속 안정화 효율 평가)

  • Lim, Jung Eun;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.39-50
    • /
    • 2015
  • Stabilization of heavy metals such as Pb, Cd, Zn, and Cu was evaluated in contaminated soil treated with poultry manure (PM) as well as its biochars pyrolyzed at $300^{\circ}C$ (PBC300) and $700^{\circ}C$ (PBC700) at the application rates of 2.5, 5.0, and 10.0 wt% along with the control, prior to 21-days incubation. After incubation, soil pH was increased from 6.94 (control) to 7.51, 7.24, and 7.88 in soils treated with PM 10 wt%, PBC300 10 wt%, and PBC700 10 wt% treatments, respectively, mainly due to alkalinity of treatments. In the soil treated with PM, the concentrations of the toxicity characteristic leaching procedure (TCLP)-extractable Pb, Cd, Zn, and Cu were increased by up to 408, 77, 24, and 955%, respectively, compared to the control. These increases may possibly be associated with an increased dissolved organic carbon concentration by the PM addition. However, in the soil treated with PBC700, TCLP-extractable Pb, Cd, Zn, and Cu concentrations were reduced by up to 23, 38, 52, and 36%, respectively, compared to the control. Thermodynamic modelling using the visual MINTEQ was done to predict the precipitations of $Pb(OH)_2$, $Cu(OH)_2$ and P-containing minerals, such as chloropyromorphite [$Pb_5(PO_4)_3Cl$] and hydroxypyromorphite [$Pb_5(PO_4)_3OH$], in the PBC700 10 wt% treated soil. The SEM-elemental dot mapping analysis further confirmed the presence of Pb-phosphate species via dot mapping of PBC700 treated soil. These results indicate that the reduction of Pb concentration in the PBC700 treated soil is related to the formations of chloropyromorphite and hydroxypyromorphite which have very low solubility.

A Study on the Source Profile Development for Diesel and Gasoline-Powered Vehicles (디젤 및 가솔린자동차 배출원의 구성물질 성분비 개발에 관한 연구)

  • Kang, Byung-Wook;Cho, Min-Shik;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Na, Kwang-Sam;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.318-329
    • /
    • 2010
  • The purpose of this study was to develop the $PM_{2.5}$ source profiles for diesel and gasoline-powered vehicles, which contained mass abundances in terms of mass fraction of $PM_{2.5}$ of chemical species. Seven diesel-powered vehicles and nine gasoline-powered vehicles were sampled from a chassis dynamometer exhaust dilution system. The species measured were water-soluble ions, elements, elemental carbon (EC), and organic carbon (OC). From this study, the large abundances of EC (54.5%), OC (26.0%), ${SO_4}^{2-}$ (1.5%), ${NO_3}^-$ (0.8%), and S (0.6%) were observed from the diesel-powered vehicle exhaust showing that carbons were dominant species. The gasoline-powered vehicle exhaust emitted large abundances of OC (38.3%), EC (4.2%), ${SO_4}^{2-}$ (3.6%), ${NH_4}^+$ (3.5%), and ${NO_3}^-$ (3.0%). The abundances of ${SO_4}^{2-}$, ${NH_4}^+$, and ${NO_3}^-$ from gasoline vehicle were greater than those of diesel vehicle. The emissions of P, S, Ca, Fe, and Zn among trace elements for the gasoline vehicle were greater than 1% of the $PM_{2.5}$ mass unlike those for the diesel vehicle. Particularly, the fraction of Zn was five times higher from the gasoline vehicle than that from the diesel vehicle. The source profiles developed in this work were intensively examined by applying chemical mass balance model.

Estimate of Regional and Broad-based Sources for PM2.5 Collected in an Industrial Area of Japan

  • Nakatsubo, Ryouhei;Tsunetomo, Daisuke;Horie, Yosuke;Hiraki, Takatoshi;Saitoh, Katsumi;Yoda, Yoshiko;Shima, Masayuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.126-139
    • /
    • 2014
  • In order to estimate the influence of sources on $PM_{2.5}$ in the industrial area of Japan, we carried out a source analysis using chemical component data of $PM_{2.5}$. $PM_{2.5}$ samples were collected intermittently at an industrial area in Japan from July 2010 to November 2012. Water soluble ions ($Cl^-$, $NO_3{^-}$, $SO{_4}^{2-}$, $Na^+$,$NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sb, Pb), and carbonaceous species (OC, EC) of the $PM_{2.5}$ (a total of 198 samples) were analyzed. Positive Matrix Factorization (PMF) model was applied to the data of those chemical components to identify the source of $PM_{2.5}$. At this observation site, nine factors were extracted. The major contributors of $PM_{2.5}$ were secondary sulfate 1, in which loading factors of $SO{_4}^{2-}$ and $NH_4{^+}$ were large (percentage source contribution: 20.9%), traffic, in which loading factors of OC (organic carbon) and EC (elemental carbon) were large (20.8%), secondary sulfate 2, in which loading factors of K and $SO{_4}^{2-}$ were large (8.0%), steel mills (7.8%), secondary chloride and nitrate (7.0%), soil (5.0%), heavy oil combustion (3.8%), sea salt (3.8%), and coal combustion (2.3%). The conditional probability function (CPF) and the potential source contribution function (PSCF) were carried out to examine the influence of a regional source and a broad-based source, respectively. CPF results supported local source influences such as steel mills, sea salt, traffic, coal combustion, and heavy oil combustion. PSCF results suggested that ships in the East China Sea, an industrial area of the east coastal region of China, and an active volcano in the Kyushu region of Japan were potential regional sources of secondary sulfate 1. Secondary sulfate 2 was affected by the burning of biomass fields and by coal combustion in Chinese urban areas such as Beijing, Hebei, and western Inner Mongolia. Source characterization using continuous data from one site showed a potential source representing fossil fuel combustion is affected both by regional and broad-based sources.

Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data (준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명)

  • Park, Seung-Shik;Kim, Sun-Jung;Gong, Bu-Joo;Lee, Kwon-Ho;Cho, Seog-Yeon;Kim, Jong-Choon;Lee, Suk-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

Evaluation of Organic Compounds and Heavy Metals in Sediments from the Urban Streams in the Busan City (부산시 도심하천 퇴적물의 유기물 및 중금속 오염도 평가)

  • Lee, Junki;Kim, Seogku;Song, Jaehong;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.1
    • /
    • pp.35-43
    • /
    • 2010
  • The main purpose of this study is to offer informations about the current conditions and basic data of sediments for the urban streams in the Busan city. Total 14 urban streams were selected and sediment samples were collected. Then, It was investigated the sediment qualities though the measurement of pH, proximate analysis, elemental analysis, COD, organic carbon content, volatile solid content and heavy metal concentration. Results show that COD, organic carbon content, volatile solid content and heavy metal concentration of sediment are determined in the range of $1.20{\sim}75.07mg\;L^{-1}$, 0.19~11.54%, 0.23~34.21% and $0.4{\sim}732.6mg\;kg^{-1}$, respectively. Finally, Analysis data of sediments were compared with USEPA sediment quality standards and ontario sediment quality guidelines. As a result, when compared with USEPA sediment quality standards, total 9 samples were evaluated as heavily polluted and total 3 samples were evaluated as moderately polluted. But, when compared with ontario sediment quality guidelines, total 3 samples were evaluated as Severe effect level and total 10 samples were evaluated as lowest effect level.

Seasonal Variations of OC and EC in PM10, PM2.5 and PM1.0 at Gosan Superstation on Jeju Island (제주도 고산 PM10, PM2.5, PM1.0 중 OC와 EC의 계절별 변화 특성)

  • Lim, Sae-Hee;Lee, Mee-Hye;Kang, Kyeong-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.567-580
    • /
    • 2010
  • Organic carbon (OC) and elemental carbon (EC) concentrations were determined for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$ aerosols particles collected at Gosan Superstation on Jeju Island from August 2007 to September 2008. Aerosols were collected on quartz filters for 24 hours and then OC and EC were analyzed by TOR/IMPROVED method. Mean concentrations of OC and EC were $4.66\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{10}$, $3.95\;{\mu}g/m^3$ and $1.69\;{\mu}g/m^3$ for $PM_{2.5}$, and $3.16\;{\mu}g/m^3$ and $1.42\;{\mu}g/m^3$ for $PM_{1.0}$, respectively. The concentrations of OC and EC comprised 16.4% and 6.0% of $PM_{10}$, 22.9% and 9.8% of $PM_{2.5}$, and 23.0% and 10.0% of $PM_{1.0}$. OC and EC showed a clear seasonal variation with the highest in winter and the lowest in summer. The correlations between the two were also the best during the winter ($R^2$=0.87, 0.94, and 0.95 for $PM_{10}$, $PM_{2.5}$ and $PM_{1.0}$). The ratio of OC/EC exhibited the maximum (7.24) during an Asian dust event due to an increase of OC, which was possibly derived from soil. The mass fraction of both OC and EC was the highest in fall. When OC and EC concentrations were highly elevated, EC1 (the first EC fraction determined at $550^{\circ}C$) and pyrolyzed OC (POC) were dominant subcomponents in winter and OC3 (the third OC fraction determined at $450^{\circ}C$) and POC in spring.

PM10 and Associated Trace Elements in the Subway Cabin of Daejeon by Instrumental Neutron Activation Analysis (기기 중성자방사화 분석을 이용한 대전 지하철 객차 내 PM10과 미량성분의 특성)

  • Jeong, Jin Hee;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.8
    • /
    • pp.459-467
    • /
    • 2016
  • In order to assess the pollution status and distribution characteristics of PM and PM-bound species, PM10 samples were collected using mini-volume air sampler at the subway cabin in Daejeon city. Measurements of about 24 elements including toxic metals (e.g., As, Cr, Mn, V, Zn) in PM10 were made by instrumental neutron activation analysis and X-ray fluorescence. The average PM10 concentration was $59.3{\pm}14.5{\mu}g/m^3$ in the subway cabin with a range of 42.2 to $97.4{\mu}g/m^3$, while the associated elemental concentrations were varied in the range of $10^{-3}$ to $10^5ng/m^3$. It was found that the concentration of Fe ($12.5{\mu}g/m^3$) was substantially higher than any other element. The Fe concentration was apportioned by about 20% of the PM10 concentration. The results of factor analysis indicate that there are no more than six sources in the cabin (e.g., brake-nonferrous metal particle, resuspended rail dust, fuel combustion, vehicle exhaust, black carbon, Cr-related).

A Study on the Biogasification of Municipal and Industrial Wastewater Sludge (도시 하수 및 공장 폐수 슬러지의 바이오가스화에 관한 연구)

  • Kim, Jahyun;Kim, Seogku;Hwang, Injoo;Ahn, Jaehwan;Kang, Sungwon;Lee, Wontae;Lim, Junhyuk;Lee, Jeakun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.5-12
    • /
    • 2014
  • Anaerobic digestion was investigated for the stabilization of sludge, decrease of volatile solids, production of biogas for wastewater sludge. In this study, total solids and volatile solids, elemental analysis were conducted to determine characteristics of various types of sludges and investigate the feasibility of biogas production of Municipal Wastewater Sludge (MWS), Industrial Wastewater Sludge (IWS), mixed sludge (Mix), and Municipal Wastewater Sludg Cake (MWSC). Total solids, volatile solids, and C/N ratio were determined in the range of 11.2~20.6 %, 62.1~83.1 % of TS and 4.96~8.33 %. Using the biochemical methane potential (BMP test), mixed sludge and wastewater sludge finished the methane production within approximately 20 day and 16~17 day. Sludge cake finished within 10 day. Mixed sludge produced 395.5 mL $CH_4$ per g of Volatile Solid (VS) and resulted in the highest methane production. For carbon dioxide production, five sludges had similar value of accumulated carbon dioxide production except for sludge cake.

Potential Source of PM10, PM2.5, and OC and EC in Seoul During Spring 2016 (2016년 봄철 서울의 PM10, PM2.5 및 OC와 EC 배출원 기여도 추정)

  • Ham, Jeeyoung;Lee, Hae Jung;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.41-54
    • /
    • 2017
  • Organic carbon (OC) and elemental carbon (EC) in $PM_{2.5}$ were measured using Sunset OC/EC Field Analyzer at Seoul Hwangsa Monitoring Center from March to April, 2016. The mean concentrations of OC and EC during the entire period were $4.4{\pm}2.0{\mu}gC\;m^{-3}$ and $1.4{\pm}0.6{\mu}gC\;m^{-3}$, respectively. OC/EC ratio was $3.4{\pm}1.0$. The average concentrations of $PM_{10}$ and $PM_{2.5}$ were $57.4{\pm}25.9$ and $39.7{\pm}19.8{\mu}g\;m^{-3}$, respectively, which were detected by an optical particle counter. The OC and EC peaks were observed in the morning, which were impacted by vehicle emission, however, their diurnal variations were not noticeable. This is determined to be contributed by the long-range transported OC or secondary formation via photochemical reaction by volatile organic compounds at afternoon. A conditional probability function (CPF) model was used to identify the local source of pollution. High concentrations of $PM_{10}$ and $PM_{2.5}$ were observed from the westerly wind, regardless of wind speed. When wind velocity was high, a mixing plume of dust and pollution during long-range transport from China in spring was observed. In contrast, pollution in low wind velocity was from local source, regardless of direction. To know the effect of long-range transport on pollution, a concentration weighted trajectory (CWT) model was analyzed based on a potential source contribution function (PSCF) model in which 75 percentiles high concentration was picked out for CWT analysis. $PM_{10}$, $PM_{2.5}$, OC, and EC were dominantly contributed from China in spring, and EC results were similar in both PSCF and CWT. In conclusion, Seoul air quality in spring was mainly affected by a mixture of local pollution and anthropogenic pollutants originated in China than the Asian dust.