• Title/Summary/Keyword: Element numbers

Search Result 317, Processing Time 0.029 seconds

Development of Prediction Model of Subcontract's Bidding-Ratio for Private Apartment Projects (민간 공동주택 하도급 낙찰률 예측모델 개발)

  • Jang, Ki-Suk;Koo, Kyo-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.250-251
    • /
    • 2021
  • A subcontract work order is the basis of the construction process and consists of the root and trunk of the construction industry. The construction process through a subcontract work order is an important element of project success, and it is the basic unit of creating profit in the construction industry. Therefore, correct analysis and forecasting of subcontract work orders allow correct estimation of construction cost and profit which is the foundation of corporate decision making. This study has started to provide predictions of subcontractor's bidding-ratio for decision-making. Since the actual project data has been used in this study, the contribution level of the model is highly expected in actual field. The statistical confidential level of adjusted decision coefficient is concluded low because of limited sample numbers. However, its accuracy and confidence level can be increased through increasing sample numbers, considering more variables, and studying of reducing error.

  • PDF

Prediction of Blank Thickness Variation in a Deep Drawing Process Using Deep Neural Network (심층 신경망 기반 딥 드로잉 공정 블랭크 두께 변화율 예측)

  • Park, K.T.;Park, J.W.;Kwak, M.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.89-96
    • /
    • 2020
  • The finite element method has been widely applied in the sheet metal forming process. However, the finite element method is computationally expensive and time consuming. In order to tackle this problem, surrogate modeling methods have been proposed. An artificial neural network (ANN) is one such surrogate model and has been well studied over the past decades. However, when it comes to ANN with two or more layers, so called deep neural networks (DNN), there is distinct a lack of research. We chose to use DNNs our surrogate model to predict the behavior of sheet metal in the deep drawing process. Thickness variation is selected as an output of the DNN in order to evaluate workpiece feasibility. Input variables of the DNN are radius of die, die corner and blank holder force. Finite element analysis was conducted to obtain data for surrogate model construction and testing. Sampling points were determined by full factorial, latin hyper cube and monte carlo methods. We investigated the performance of the DNN according to its structure, number of nodes and number of layers, then it was compared with a radial basis function surrogate model using various sampling methods and numbers. The results show that our DNN could be used as an efficient surrogate model for the deep drawing process.

Mesh Reconstruction Using Redistibution of Nodes in Sub-domains and Its Application to the Analyses of Metal Forming Problems (영역별 절점재구성을 통한 격자재구성 및 소성가공해석)

  • Hong, Jin-Tae;Yang, Dong-Yol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.255-262
    • /
    • 2007
  • In the finite element analysis of forming process, objects are described with a finite number of elements and nodes and the approximated solutions can be obtained by the variational principle. One of the shortcomings of a finite element analysis is that the structure of mesh has become inefficient and unusable because discretization error increases as deformation proceeds due to severe distortion of elements. If the state of current mesh satisfies a certain remeshing criterion, analysis is stopped instantly and resumed with a reconstructed mesh. In the study, a new remeshing algorithm using tetrahedral elements has been developed, which is adapted to the desired mesh density. In order to reduce the discretization error, desired mesh sizes in each lesion of the workpiece are calculated using the Zinkiewicz and Zhu's a-posteriori error estimation scheme. The pre-constructed mesh is constructed based on the modified point insertion technique which is adapted to the density function. The object domain is divided into uniformly-sized sub-domains and the numbers of nodes in each sub-domain are redistributed, respectively. After finishing the redistribution process of nodes, a tetrahedral mesh is reconstructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

The study for Compliance Mismatch in the End-to-End Anastomosis of Coronary Artery and PTFE (관상동맥과 PTFE의 End-To-End 문합에서 컴플라이언스 부적합에 관한 연구)

  • Shim,, Jae-Joon;Han, Geun-Jo;Ahn, Sung-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.34-41
    • /
    • 2003
  • Finite element analysis of end-to-end artery/PTFE anastomosis recently have been researched. But, these studies were carried out without the compensation for the error of finite element analysis and assumed the artery and PTFE as the simple cylindrical shape in spite of being the fatty tissue which covers the heart. Therefore, we performed the convergency study with respect to increasing the element numbers and considered the fatty tissue as the elastic foundation in the finite element analysis. The results are as fallow : 1. An anastomosis with the thinner thickness and larger diameter PTFE than artery could reduce the compliance disagreement. 2. A fatty tissue was affected to reduce the compliance mismatch in the vicinity of anastomosis of different material. Therefore a hypercompliant zone become narrorw and a compliance discrepancy decrease between the artery and the PTFE about 70%. And radial displacement with respect to longitudinal direction of an artery and the PTFE anastomosis was similar to a sectional compliance.

Design of Forming Roll using FEM (FEM을 이용한 Forming Roll 설계)

  • Yoon Hyung-Joon;Yoon Young-Sik
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.761-764
    • /
    • 2005
  • In this paper, multi-pass roll forming process is simulated with a commercial FEM software. From these simulations, detects like excessive thickness decrease were estimated. And effects of springback, idle roll without force, and self-contacts between materials were also predicted. As a result, the defects of the forming process and the numbers of the roll pass can be decreased. And these analyses will be able to design the optimal roll forming process.

  • PDF

Forecast Groundwater Level for Management with Neural Network and Fuzzy sets

  • Wang, Yunqing;Yang, Liping
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1175-1176
    • /
    • 1993
  • This paper introduces a new model for forecasting groundwater level on the basis of analysing defect of finite element method. The new model is built with fuzzy sets and neural networks. It is convenient for use. We computed the groundwater level of one city in P. R. China with it and got a very satisfactory result. It can be popularized to corecast groundwater level of mine.

  • PDF

INCOMPRESSIBLE FLOW COMPUTATIONS USING A HERMITE STREAM FUNCTION (Hermite 유동함수를 이용한 비압축성 유동계산)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • This paper describes a recent development on the divergence free basis function based on a hermite stream function and verifies its validity by comparing results with those from a modified residual method known as one of stabilized finite element methods. It can be shown that a proper choice of degrees of freedom at a node with a proper arrangement of the hermite interpolation functions can yield solenoidal or divergent free interpolation functions for the velocities. The well-known cavity problem has been chosen for validity of the present algorithm. The comparisons from numerical results between the present and the modified residual showed the present method yields better results in both the velocity and the pressure within modest Reynolds numbers(Re = 1,000).

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.

GRADED w-NOETHERIAN MODULES OVER GRADED RINGS

  • Wu, Xiaoying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1319-1334
    • /
    • 2020
  • In this paper, we study the basic theory of the category of graded w-Noetherian modules over a graded ring R. Some elementary concepts, such as w-envelope of graded modules, graded w-Noetherian rings and so on, are introduced. It is shown that: (1) A graded domain R is graded w-Noetherian if and only if Rg𝔪 is a graded Noetherian ring for any gr-maximal w-ideal m of R, and there are only finite numbers of gr-maximal w-ideals including a for any nonzero homogeneous element a. (2) Let R be a strongly graded ring. Then R is a graded w-Noetherian ring if and only if Re is a w-Noetherian ring. (3) Let R be a graded w-Noetherian domain and let a ∈ R be a homogeneous element. Suppose 𝖕 is a minimal graded prime ideal of (a). Then the graded height of the graded prime ideal 𝖕 is at most 1.

On The Parallel Inplementation of a Static/Explicit FEM Program for Sheet Metal Forming (판금형 해석을 위한 정적/외연적 유한요소 프로그램의 병령화에 관한 연구)

  • ;;G.P.Nikishikov
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.625-628
    • /
    • 1995
  • A static/implicit finite element code for sheet forming (ITAS3D) is parallelized on IBM SP 6000 multi-processor computer. Computing-load-balanced domain decomposition method and the direct solution method at each subdomain (and interface) equation are developed. The system of equations for each subdomain are constructed by condensation and calculated on each processor. Approximated operation counts are calculated to set up the nonlinear equation system for balancing the compute load on each subdomain. Th esquare cup tests with several numbers of elements are used in demonstrating the performance of this parallel implementation. This procedure are proved to be efficient for moderate number of processors, especially for large number of elements.

  • PDF