• Title/Summary/Keyword: Element Free analysis

Search Result 1,002, Processing Time 0.022 seconds

Free Vibration Analysis of Elastic Bars using Isogeometric Approach

  • Lee, Sang-Jin;Park, Kyoung-Sub
    • Architectural research
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2011
  • A study on the free vibration analysis of elastic bar is described in this paper. In order to determine the natural frequencies of bars, a bar element is developed by using isogeometric formulation. The B-spline is introduced to represent the geometry of bar and the same geometric definition is also used to define its unknown displacement field in isogeometric formulation. Therefore, the stiffness and mass matrices are derived by the order-free B-spline basis function. The efficiency and accuracy of the present isogeometric bar elementis demonstrated by using several numerical tests. From numerical results, it is found to be that the present isogeometric element produces very accurate natural frequencies of bars. Finally, the present isogeometric solutions are provided as future reference solutions.

Free Vibration Characteristics of the Steel and GFRP Composite Cylindrical Shells with Simply Supported Conditions (단순지지된 Steel 및 GFRP 복합재료 원통셸의 자유진동 특성)

  • 이영신;최명환;신도섭
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.273-284
    • /
    • 1999
  • The cylindrical shells are used as primary components of complex structures such as airplane fuselages and nuclear pressure vessels. Recently the free vibration analysis of these structures are investigated by many researchers. The engineering informations on experimental validation of the free vibration behavior on the simply supported cylindrical shells are very few. The experimental methods for realizing the physical boundary condition of simply supported edges are examined. Natural frequencies and mode shapes of the isotropic and plain weave composite simply supported shells are obtained by modal tests. A theoretical and finite element analysis are also performed in order to validate the experimental results. The experimental results indicate that the simply supported boundary conditions with bolts along the circumferential direction of shell in both ends are well achieved. Those are shown to agree with the analytical results and with the finite element analysis results. These methods can be used to realize other experimental simple support boundary conditions.

  • PDF

Free Vibration Analysis of the Partial Fuel Assembly Under Water Using Substructure Method (부분구조법을 이용한 부분핵연료 집합체의 수중 자유진동해석)

  • Lee, Kang-Hee;Yoon, Kyung-Ho;Song, Kee-Nam;Kim, Jae-Yong;Rhee, Hui-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.246-249
    • /
    • 2006
  • Finite element vibration analysis of the trial 5x5 partial fuel assembly in the still water was performed using the substructure method. ANSYS software was used as a finite element modeling and modal analysis tool. The calculated natural frequencies of the partial fuel assembly were more consistent with the experimental results for the identical test model compared to the much larger solid model. This modeling technique can be utilized for the fuel assembly dynamic behavior analysis under normal operation, seismic and loss-of-coolant-accident analysis.

  • PDF

Multi-scale finite element analysis of acoustic waves using global residual-free meshfree enrichments

  • Wu, C.T.;Hu, Wei
    • Interaction and multiscale mechanics
    • /
    • v.6 no.2
    • /
    • pp.83-105
    • /
    • 2013
  • In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.

Vibration analysis of FG reinforced porous nanobeams using two variables trigonometric shear deformation theory

  • Messai, Abderraouf;Fortas, Lahcene;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.461-479
    • /
    • 2022
  • A finite element method analysis framework is introduced for the free vibration analyses of functionally graded porous beam structures by employing two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element. A comprehensive parametric study is carried out, with a particular focus on the effects of various structural parameters such as the dispersion patterns of GPL reinforcements and porosity, thickness ratio, boundary conditions, nonlocal scale parameter and strain gradient parameters. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams.

Automatic Mesh Generation for Three-Dimensional Structures Consisting of Free-Form Surfaces (자유 곡면으로 구성되는 3차원 구조물에 대한 자동 요소 분할)

  • ;Yagawa, Genki
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • This paper describes an automatic finite element(FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid and shell structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid and shell structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

  • PDF

Crack Propagation Analysis of Mixed Mode Crack by Element-Free Galerkin Method (Element-Free Galerkin법을 이용한 혼합모드상태 균열의 균열진전해석)

  • 이상호;윤열철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.485-494
    • /
    • 1999
  • 본 연구에서는 요소를 사용하지 않고 절점들만을 이용하여 해석이 가능한 새로운 수치해석기법인 EFG(Element-Free Galerkin)법을 사용하여 임의의 균열의 성장과정을 해석할 수 있는 효율적인 알고리즘을 개발하고, 이를 바탕으로 균열의 성장방향과 경로를 정확히 추정하여 일련의 균열진전해석을 수행할 수 있는 프로그램을 개발하였다. 균열해석에 있어서는 균열선단의 특이성과 균열면의 분연속성을 수치적으로 반영할 수 있는 기법을 도입하여 균열을 모형화하였으며, 선형탄성파괴역학이론에 근거하여 균열해석과정을 정식화하였다. 또한, EFG 형상함수가 kronecker delta 조건을 만족시키지 못함으로써 발생하는 필수경계조건의 처리문제를 penalty법을 이용하여 해결하였다. 개발된 균열진전해석 알고리즘을 정지상태와 성장하는 상태에 있는 모드 Ⅰ, 모드 Ⅱ 및 혼합모드상태의 대표적인 균열문제들에 적용하여 응력확대계수와 균열성장방향 및 균열의 성장경로를 추정하고 이를 이론적·실험적 결과들과 비교함으로써 그 정확성과 효율성을 검증하였다.

  • PDF

Nonlinear aerostatic analysis of long-span suspension bridge by Element free Galerkin method

  • Zamiria, Golriz;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.75-84
    • /
    • 2020
  • The aerostatic stability analysis of a long-span suspension bridge by the Element-free Galerkin (EFG) method is presented in this paper. Nonlinear effects due to wind structure interactions should be taken into account in determining the aerostatic behavior of long-span suspension bridges. The EFG method is applied to investigate torsional divergence of suspension bridges, based on both the three components of wind loads and nonlinearities of structural geometric. Since EFG methods, which are based on moving least-square (MLS) interpolation, require only nodal data, the description of the geometry of bridge structure and boundaries consist of defining a set of nodes. A numerical example involving the three-dimensional EFG model of a suspension bridge with a span length of 888m is presented to illustrate the performance and potential of this method. The results indicate that presented method can effectively be applied for modeling suspension bridge structure and the computed results obtained using present modeling strategy for nonlinear suspension bridge structure under wind flow are encouragingly acceptable.

General Theory for Free Vibration and Stability Analysis of Thin-walled Space Beam-Columns and Frames (박벽 공간 보-기둥과 뼈대구조의 자유진동 및 안정성 해석을 위한 일반이론)

  • 김성보;구봉근;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.239-246
    • /
    • 1997
  • The general formulation of free vibration and stability analysis of unsymmetric thin-walled space frames and beam-columns is presented. The kinetic and total potential energy is derived by applying the extended virtual work principle, introducing displacement parameters defined at the arbitrarily chosen axis and including second order terms of finite semitangential rotations. In formulating the finite element procedure, cubic Hermitian polynomials are utilized as shape functions of the two node space frame element. Mass, elastic stiffness, and geometric stiffness matrices for the unsymmetric thin-walled section are evaluated. In order to illustrate the accuracy and practical usefulness of this formulation, finite element solutions for the free vibration and stability problems of thin-walled beam-columns and space frames are presented and compared with available solutions.

  • PDF

Effect of porosity distribution on free vibration of functionally graded sandwich plate using the P-version of the finite element method

  • Hakim Bentrar;Sidi Mohammed Chorfi;Sid Ahmed Belalia;Abdelouahed Tounsi;Mofareh Hassan Ghazwani;Ali Alnujaie
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.551-567
    • /
    • 2023
  • In this work, the free vibration analysis of functionally graded material (FGM) sandwich plates with porosity is conducted using the p-version of the finite element method (FEM), which is based on the first-order shear deformation theory (FSDT). The sandwich plate consists of two face-sheet layers of FGM and a homogeneous core layer. The obtained results are validated using convergence and comparison studies with previously published results. Five porosities distribution models of FGM sandwich plates are assumed and analyzed. The effect of the thickness ratio, boundary conditions, volume fraction exponents, and porosity coefficients of the top and bottom layers of FGM sandwich plates on the natural frequency are addressed.