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Automatic Mesh Generation for Three-Dimensional Structures
Consisting of Free-Form Surfaces

Joon-Seong Lee*, Genki Yagawa**, Myon-Woong Park***

Abstract

This paper describes an automatic finite element(FE} mesh generation for three-dimensional
structures consisting of free-form surfaces. This mesh generation process consists of three sub-
processes: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and {c)
generation of elements. One of commercial solid modelers is employed for three-dimensional sol-
id and shell structures, Node is generated if its distance from existing node points is similar to the
node spacing function at the point. The node spacing fonction is well controlled by the fuzzy
knowledge processing. The Delaunay method is introduced as a basic tool for element generation.
Automatic generation of FE meshes for three-dimensional solid and shell structures holds great
benefits for analyses. Practical performances of the present system are demonstrated through sev-
eral mesh generations for three-dimensional complex geometry.

Key words : Automatic mesh generation, Fuzzy theory, Bucketing method, Delaunay triangulation,
Free-form surface, Solid geometry, Finite element analysis

1. Introduction

The finite element method(FEM) has been widely u-
tilized in simulating various engineering problems such
as structural deformation, thermal conduction, fluid dy-
namics, electromagnetics and so on. The main reason
for this is its high capability of dealing with boundary-
value problems in arbitrarily shaped domains. On the
other hand, a mesh used influences computational ac-
curacy as well as time so significantly that the mesh
generation process is as much important as the FEM
analysis itself. Especially, in such large scale nonlinear
FEM analyses that approach the limitation of com-
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putational capability of so-called supercomputers, it is
highly demanded to optimize the distribution of mesh
size under the condition of limited total degrees of
freedom(DOFs). Thus, the mesh generation process be-
comes more and more time-consuming and heavier
tasks.

Loads for pre-processing and post-processing are
increasing rapidly in accordance with an increase of
scale and complexity of analysis models to be solved,
Particularly, the mesh generation process, which in-
fluences computational accuracy as efficiency and
whose fully automation is very difficult in three-di-
mensional cases, has become the most critical issue
in a whole process of the FE analyses. In this respect,
various researches''” have been performed on the de-
velopment of automatic mesh generation techniques.
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Among mesh generation methods, the tree model

method"*

can generatc graded meshes and it uses a
reasonably small amount of computer time and
storage. However, it is, by nature, not possible to ar-
bitratily control the changing rate of mesh size with
respect 10 lacation, so that some smaller projection
and notch ete. are sometimes omitted. Also, domatn
decompusition method™ " does not always succeed,
and a designation of such subdomains s very tedious
for uses in three-dimensional cases.

In recent years, much attention has been paid to

" which al-

tuzzy knowledge processing techniques
low computers 10 freal “ambiguous” matlers and
processes. In this paper, we explain an FE mesh gen-
eration system based on fuzzy knowledge processing
and compulational geometry techniques. Here, the
node densily distribution, which is a kind of a node
spacing function, was well controlled by means of
the fuzzy knowledge processing technique, so that
even beginners of the FE analyses are able 1o pro-
duce nearly optimum meshes through very simple
operalions as if they were experts.

The individual techniques in the present study are
as totlows:

(a} Adoption of praclical geometric modelers such

as Designbase!"”

which are capable of dealing
with Bezier-type free-form surfaces.

{b) Aduption of the bucketing method [16] for fast
node generation, which is one of compulational
geometry techniques.

{c) Adoption of the Delaunay triangulation method"
" tor fast element generation.

The present mesh generation sysiems are con-
structed in one of popular engineering workstations
{(EWS) using the € and C++ language under the
Unix environment.

In the following sections, the fundamental principle
of the present algorithm is described. Finally, prac-
tical performances of the developed systems are de-
monstrated through the mesh generation of several
complex geometries.

2. General requirement for automatic mesh
generation systems
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The phase of pre-processing is very important in
the sense that the generation of a valid mesh in a
domain with a complex geometry is not a trivial
operation and can be very expensive in terms of the
time required. On the other band, it is crucial o
create a mesh which is well adapted to the physical
properties of the problem under consideration, as the
quality of the computed solution is strongly related to
the quality of the mesh.

Vartous automatic and semi-automatic mesh gen-
eration methods have been investigated so far. The re-
quirements for ideal fully automatic mesh generation

. 17
systems may be summarized as follows' ™

{a) Arbitearily shaped domain can be subdivided
into elements.

(b} Mesh size and its changing rate with respect to
location can be easily controlled,

(c)} Distortion ol element shape can be avoided as
much as possible.

(d) Total number of nodes can be controlied.

(¢) Number of inpul data is smaller.

The item(a) is fundamental, while{b) and {(c} are
strongly refated to mesh quality. The item(d) cor-
responds to the controllability of computational time
and storage. If any system satisfies the items (a)
through (d), optimuny meshes can be gencrated with
the balance of computational accuracy as well as ef-
ficiency. The ilem {e} is also indispensable for any
systems dealing  with  three-dimensional  complex

geometries,
3. Outline of the system

3.1 Definition of geometric model

Geometric modelers are utilized to define geome-
tries of analysis domains. One of commercial geome-
tric modelers, Designbase Ver. 3" is employed for
three-dimensional solid structures and shell structures.
The advantage of Designbase is that a wide range of
solid shapes from polyhedra to free-form surfaces can
be designed in a unified manner. But for shell struc-
tures, a specialized selection for shell structures -first-
lv, define the three-dimensional solid structures, and

selection of surface the shell structures as shown in
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Definition of solid model

Fig. 1. Definition of three-dimensional shell model.

Fig. 1 is employed. This method is adopted to think
over the analyzing compound solid and shell struc-
tures. In these modelers, three-dimensional geometric
data are stored as a tree structure of domain-surfaces
(free-form surfaces such as Bezier or Gregory type
surfaces) - edge(B-spline or Bezier type curves) - ver-
tices.

Designbase allows the user to start with a hierarch-
ical compositional Coustructive Solid Geometry
(CSG)-view of a part and then to refine it with local
but consistent operations on the boundary represen-
tation of the object. By basing all operations a-
vailable to the user on well-defined, invertible Euler-
operations, it is possible to keep a compact represen-
tation of the complete design history of a part, and
thus to “undo” and ‘redo’ any sequence of opera-
tions. This encourages the designer to try out ideas
without fear of destroying a model in which several
hours of design time have already been invested. It
also makes it possible to store several alternative ver-
sions of a design in a natural and efficient manner.
As an example, Figs. 2(a) and 2(b) show a geometry
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(a) Solid model

(b) Shell model
Fig. 2. Examples of geometry model.

model of three-dimensional solid and shel) structures
using Designbase.

3.2 Designation of node density distributions

In this section, the connecting process of locally-op-
timum mesh images is deall with using the fuzzy
knowledge processing technique®’”'?
Performances of automatic mesh generation

methods based on node generation algorithms depend
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Fig. 3. Examples of local nude patterns. (a) For a hole
(b) For a crack tip

on how to contrel node spacing functions or node
density distributions and how to generate nodes. The
basic concept of the present mesh generation al-
gorithm is originated from the imitation of mesh gen-
eration processes by human cxperts on FE analyses.
One of the aims of this algorithm is to transfer such
experts' techniques to beginners.

In the present system, nodes are first generated,
and then a finite element mesh is built. In general, it
is not so easy to well control element size for a com-
plex geometry. A node density distribution over a
whole geometry model is constructed as follows. The
present system stores several local nodal patterns
such as the pattemn suitable to well capture stress con-
centration, the patiern to subdivide a finite domain un-
iformly, and the pattern to subdivide a whole domain
uniformly. A user selects some of those local nodal
patterns, depending on their analysis purposes, and
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designates where to locate them.

For example, when either the crack of the hole ex-
ists solely in an infinite domain, the local node pat-
terns as shown in Figs. 3(a) and 3(b) may be re-
garded locally-optimum around the crack tip or the
hole, respectively.

When these stress concentration fields exist closely
to each other in the same analysis domain, a simple
superposition of both local node patterns gives the
tesult as shown in Fig. 4(b). Namely, extra nodes
have to be removed from the superposed region of
both patterns.

In the presem method, the field A close to the hole
and the field B close to the crack-tip are defined in
terms of the membership functions used in the fuzzy
set theory as shown in Fig. 4(c). For the purpose of
simplicity, each membership function is given a func-
tion of one-dimension in the figure. In practice the
membership function can be expressed as p(x, y) in
this particular example, and in three-dimensional
cases it is a function of three-dimensional coordinates.
i.e. p(x. y, z). In Fig. 4(c), the horizontal axis de-
notes the location, while the vertical axis does the
value of membership function, which indicates the
magnitude of “loseness’ of the tocation to each stress
concentration field. That is, a nodal location closer to
the stress concentration field takes a larger value of
the membership function. As for Figs. 4(b) and 4(c),
choosing the mesh pattern with a larger value of the
membership function in each location, one can obtain
an overlapped curve of both membership functions,
and the domain can be automatically divided into the
following two sub-domains A and B as shown in Fig.
4(d): the sub-domain close to the crack-tip and that
of the hole. Finally, bath node patterns are smoothly
connected as shown in Fig. 4(e). This procedure of
node generation, i.e. the connection procedure of
both node patterns, is summarized as follows:

If pa(X, ¥p) 2 Ha(xp ¥p) for a node p(x, y,) be-
longing to the pattern A, then the node p is generated,
and otherwise p is not generated.

If pp(Xe ¥y) 2 Ma(x,, ¥ for a node q(x,. y,) be-
longing to the pattern B, then the node q is generated,
and otherwise q is not generated.

It is apparent that the above algorithm can be easi-
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Fig. 4. Superposition of node patterns based on fuzzy
theory.

ly extended to three-dimensional problems and any
number of node patterns. In addition, since finer
node patterns are generally required to place near
stress concentration sources, it is convenient to let the
membership function correspond to node density as

well. According to this definition, Fig. 4(d) also in-
dicates the distribution of node density over the
whole analysis domain including the two stress con-
centration fields.

When designers do not want any special meshing,
they can adopt uniformly subdivided mesh. It is pos-
sible to combine the present techniques with an a-
daptive meshing technique.

3.3 Node generation

Node generation is one of time consuming
processes in automatic mesh generation. In the
present study, the bucketing method"® is adopted to
generate nodes which satisfy the distribution of node
density over a whole analysis domain. Fig. 5 shows
its fundamental principle, taking the previous two-di-

Nodal density

{b) Example of bucket decomppsition
B : Group of employed nodes

A ; Group of candidate nodes

Peesssesoseses Bucket
AAEZEIEITE YN Y L
COa¢NOOIPIOIRNNDY
n.-o-ooooo.ooo‘/\ ‘\
<boundary>
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[}
_“ll\o . .
<oyt> § o <in>

o Generaied nodes
& Nodes taken from Gr, A
o Node being tested

® Candidaie nodes not 1ested
© Tested candidate nodes

(c) Node generation in one of buckets
Fig. 8. Node generation based on bucketing method.
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mensional mesh generation as an example without
any loss of generality, Let us assume that the dis-
tribution of node density over a whole analysis
domain is already given as shown in Fig. 5{a). At
first, a super-rectangle enveloping the analysis do-
main is defined as shown in Fig. 5¢(b). In the three-di-
mensional solid case, a super hexahedron is utilized
to envelop an analysis domain. Next, the super-rec-
tangle is divided into a pumber of small sub-rec-
tangles, each of which is named "Buckel . Nodes are
generated bucket by bucket.

At first, a number of candidate nodes with unifarm
spacing are preparced in one of buckets as shown in Fig,
5(c). The distance of two neighboring candidate nodes
is set 10 be smalier than the mintmum distance of
nodes to be generated in the relevant bucket. Next, can-
didate nodes are pick up one by ane, starting from the
Jeft-bottom commer of the bucket, and are put into the
bucket. A candidate nrode is adopted as one of (he final
nodes when it satisfies the following two criteria:

{a) The candidate node is inside the analysis
domain(IN/OUT check).

{b) The distance between the candidate node and
the nearest node already gencrated in the buck-
et satisfies the node density at the point to
some extent.

ik ‘*},*,x xxvmap,_‘*;

w

Fig. 6. Gencrated appearance of nodes,
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Practically, the criterion (a) is first examined buck-
et by bucket. As for buckets lying across the domain
boundary, the criterion (a) is examined node by node.
It should be noted here that the nodes already gen-
erated in the neighboring buckets have to be ex-
amined for the criterion (b) as well when a candidate
rode is possibly generated near the border of the
relevant bucket. Thanks to the bucketing method, the
number of examinations of the criterion (b) can be

P6
5 PI P5
—y-
P2 P2 P4
P3 P3
Fig. 7. Delaunay triangulation produced by the iterative

algorithm,
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reduced significantly, and then a node generation spe-
ed is remained to be proportional to the total number
of nodes. As for three-dimensional solid peometries,
nodes are generated in the following order : vertices,
edges, surfaces and domain. Fig. 6 shows the gen-
erated appearance of nodes for a half of piston head.

3.4 Element generation

The Delaunay triangulation method™ ¥ is utilized
to generate tetrahedral elements from numerous
nodes given in a geometry. After all the nodes are
placed in the analysis domain and on its boundary,
the system creates tetrahedral elements. As an ex-
ample, the algerithm of triangulation in the two-di-
mensional case used here is depicted in Fig. 7. Let N
be a set of nodes, it has the property that the cir-
cumcircle of any triangle in the triangulation contains

no point of N in its interior. The remaining points in

Domain boundary

Node generated

Control node for Delaunay triangulation

Triangles to be generated

Triangles to be removed

” Triangles to be removed

Fig. 8. Techniques of avoiding mis-match elements in
Delaunay triangulation (a) Mis-match elements
produced in indented region.

Domata boundary
Node generated
Contyol node for Delaunay triangulation

Triangles 1o be generated
Triangles to be removed

Triangles 10 be removed

Fig. 8. Techniques of avoiding mis-match elements in
Delaunay triangulation (b) Mis-match elements
produced near boundary.

N will be iteratively added to the triangulation. After
each point is added, it will be connected to the ver-
tices of its enclosing triangle. All internal edges of a
triangulation of a finite set N are locally optimal if
no point of N is interior to any circumcircle of a tri-
angle. In a three-dimensional domain, tetrahedral ele-
ments can be generated by the similar algorithm.

The speed of element generation by the Delaunay
triangulation method is proportional to the number of
nodes. If this method is utilized to generate elements
in a geometry with indented shape, elements are inev-
itably generated even outside the geometry as shown
in Fig. 8(a). However, such mis-match elements can
be removed by performing the IN / OUT check for
gravity center points of such elements, In addition, it
is necessary to avoid the generation of those mis-
match elements crossing domain boundary by sefting
node densities on edges to be slightly higher than
those inside the domain near the boundaries as
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Fig. 9. Smoothing operation.

shown in Fig. 8(b).

3.5 Smoothing operation

The algorithm of element generation mentioned a-
bove works well in most cases. However, element
shapes obtained are sometimes distorted in a su-
perposed region of several node patterns or near
domain boundary. The smoothing method called

" is here applied to remedy

“Laplacian operation
such distorted elements as shown in Fig. 9. In this
operation, the location of each node is replaced with
a mean value of locations of its neighboring nodes.

This operation is iterated several times.

3.6 Additional techniques for 3-D shell geometries

The algorithms described in section 3.2 through 3.5
are sufficient for mesh generation of three-dimens-
ional solid geometries. However, some additional
techniques are necessary for mesh generation of three-
dimensional shell geometries.

Using the Delaunay triangulation technique, one
can generate (triangular elements for shell geometry,
which was selected surfaces in three-dimensionat
shell cases, while tetrahedral elements in three-di-
mensional solid cases. In this paper, we adopted the
following technique to generate quadrilateral elements.

Let us assume that an analysis domain is com-
pletely divided into a number of triangulars. Two
neighboring triangulars are converted into a single
quadrilateral. After this operation, a few triangulars
still exist. Then, we divide a triangular into three qua-
drilaterals, and divide a quadrilateral into for smaller
quadrilaterals as shown in Fig. 10. Finally, we obtain
a complete quadrilateral mesh.

4. Examples and discussions

P=CAD /CAME S =84 A 17 A 1% 1996 3%

(a) Step 1 %
(b) Step 2 Z

(c) Step 3

® Original node
O Additional node

Fig. 10. Technique of converting triangles into qua-
drilaterals.

The performance of the system is demonstrated
through the mesh generation of several three-di-
mensional structures. Fig. 11 to 14 show the exam-
ples of the application of this mesh generator for thre-
e-dimensional geometry. As shown in figures, a un-
iform mesh and a nonuniform mesh were connected
very smoothly. In case of a hailf of piston head as
shown in Fig. 11, it took about 60 minutes to define
this geometry model by using Designbase. The mesh
consists of 14,250 tetrahedral elements and 27,458
nodes. Nodes and elements are generated in about 13
minutes and in about 2 minutes, respectively. This is
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Fig. 11. Mesh for a half of piston head (No. of nodes =

27,458, No. of elements = 14,250).

Fig. 12, Mesh for a patt of turbine blade (No. of nodes =
16,252, No, of ¢lements = 9,059).

measured on a popular EWS, SUN SparcStation
10(1CPU, 50 MHz). To complete this mesh, the fol-
lowing two node patterns are wutilized; (a) the base
node pattern in which nodes are generated with un-
iform spacing over a whole analysis domain, (b} a
special node pattern for stress concentration of four
corners. In case of shell geometry as shown in Fig.
14, nodes and elements were generated in about 15
minutes and in about 5 minutes, respectively.

In general, mesh generation time increases in ac-
cordance with the increasing number of nodes or the
number of total DOFs. Fig. 15 shows a relationship
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Fig. 13. Mesh of a plate with two dissimilar surface
cracks (No. of nodes = 16,252, NO. of elements
=9,059).

Fig. 14. Mesh for a symmetric 2 convolution of bellows
(No. of nodes = 3,588, No. of efements = 3.870).

between processing time and number of nodes for a
half of piston head. It is observed that the node gen-
eration speed hear can be carried out in the averaged
run time proportional to the number of nodes. It is
pointed out that the node geperation algorithm is very
important for a very large scale complex problem. To
reduce a processing time, we are adopt the following
improvements:

(a) Employment of the bucket method for node
generation.

(b} Employment of the Delaunay method for ele-
ment generation.

PFCAD,CAME =23 A 1Y # 13 1963 3y
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(c) Implementation of the algerithm on popular
EWS with the C and C++ language under the
Unix environment.

Owing to (2) and (b), mesh generation can be per-
formed in computation time of @(»n) (n:the number
of nodes). By such improvement, the generation of
three-dimensional meshes of ten thousands DOFs
can be performed within half an hour in popular
EWS.

5. Conclusions

An automatic mesh generation system for three-
dimensional solid and shell structures consisting of
free-form surfaces has been presented. Here several
local node patterns are selected and are au-
tomatically superposed based on the fuzzy
knowledge processing technique. In addition, sev-
eral computational geometry techniques were suc-
cessfully applied to node and element generation,
whose processing speed is proportional to the total
number of nodes. The developed system was u-
tilized to generate meshes of three-dimensional com-
plex geometries. The key features of the present al-
gorithm are an easy control of complex three-di-
mensional node density distribution with a fewer in-
put data by means of the fuzzy knowledge pro-
cessing technique, and fast node and element gen-
eration owing to some computational geometry tech-
niques. The effectiveness of the present system is
demonstrated through several mesh generations for
three-dimensional complex geometry.

1,500

E

Processing time{sec)
g

&

1
25,000
Number of nodes
Fig. 15. Processing time vs. total number of nodes.
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