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Abstract

This paper describes an automatic finite element(FE) mesh generation for three-dimensional 
structures consisting of free-form surfaces. This mesh generation process consists of three sub­
processes: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) 
generation of elements. One of commercial solid modelers is employed for three-dimensional sol­
id and shell structures. Node is generated if its distance from existing node points is similar to the 
node spacing function at the point. The node spacing function is well controlled by the fuzzy 
knowledge processing. The Delaunay method is introduced as a basic tool for element generation. 
Automatic generation of FE meshes for three-dimensional solid and shell structures holds great 
benefits for analyses. Practical performances of the present system are demonstrated through sev­
eral mesh generations for three-dimensional complex geometry.

Key words: Automatic mesh generation, Fuzzy theory, Bucketing method, Delaunay triangulation, 
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1. Introduction

The finite element method(FEM) has been widely u- 
tilized in simulating various engineering problems such 
as structural deformation, thermal conduction, fluid dy­
namics, electromagnetics and so on. The main reason 
for this is its high capability of dealing with boundary­
value problems in arbitrarily shaped domains. On the 
other hand, a mesh used influences computational ac­
curacy as well as time so significantly that the mesh 
generation process is as much important as the FEM 
analysis itself. Especially, in such large scale nonlinear 
FEM analyses that approach the limitation of com­

putational capability of so-called supercomputers, it is 
highly demanded to optimize the distribution of mesh 
size under the condition of limited total degrees of 
freedomfDOFs). Thus, the mesh generation process be­
comes more and more time-consuming and heavier 
tasks.

Loads for pre-processing and post-processing are 
increasing rapi니y in accordance with an increase of 
scale and complexity of analysis models to be solved. 
Particularly, the mesh generation process, which in­
fluences computational accuracy as efficiency and 
whose fully automation is very difficult in three-di­
mensional cases, has become the most critical issue 
in a whole process of the FE analyses. In this respect, 
various researches{1'13) have been performed on the de­
velopment of automatic mesh generation techniques. 
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Among mesh generation methods, the tree model 
method"，8) can generate graded meshes and it uses a 
reasonably small amount of computer time and 
storage. However, it is, by nature, not possible to ar­
bitrarily control the changing r시e of mesh size with 
respect to location, so that some smaller projection 
and notch etc. are sometimes omitted. Also, domain 
decomposition method" 1111 does not always succeed, 
and a designation of such subdomains is very tedious 
for uses in three-dimensional cases.

In recent years, much attention has been paid to 
fuzzy knowledge processing techniques1141, which al­
low computers to treat "ambiguous" matters and 
processes. In this paper, we explain an FE mesh gen­
eration system based on fuzzy knowledge processing 
and computational geometry techniques. Here, the 
node density distribution, which is a kind of a node 
spacing function, was well controlled by means of 
the fuzzy knowledge processing technique, so that 
even beginners of the FE analyses are able to pro­
duce nearly optimum meshes through very simple 
operations as if they were experts.

The individual techniques in the present study are 
as follows:

(a) Adoption of practical geometric modelers such 
as Designbasetl5) which are capable of dealing 
with Bezier-type free-form surfaces.

(b) Adoption of the bucketing method [16] for fast 
node generation, which is one of computational 
geometry techniques.

(c) Adoption of the Delaunay triangulation method0
31 for fast element generation.

The present mesh generation systems are con- 
stmeted in one of popular engineering workstations 
(EWS) using the C and C++ language under the 
Unix environment.

In the following sections, the fundamental principle 
of the present algorithm is described. Finally, prac­
tical performances of the developed systems are de­
monstrated through the mesh generation of several 
complex geometries.

2. General requirement for automatic mesh 
generation systems
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The phase of pre-processing is very important in 
the sense that the generation of a valid mesh in a 
domain with a complex geometry is not a trivial 
operation and can be very expensive in terms of the 
time required. On the other hand, it is crucial to 
create a mesh which is well adapted to the physical 
properties of the problem under consideration, as the 
quality of the computed solution is strongly related to 
the quality of the mesh.

Various automatic and semi-automatic mesh gen­
eration methods have been investigated so far. The re­
quirements for ideal fully automatic mesh generation 
systems may be summarized as follows(l7):

(a) Arbitrarily shaped domain can be subdivided 
into elements.

(b) Mesh size and its changing rate with respect to 
location can be easily controlled.

(c) Distortion of element shape can be avoided as 
much as possible.

(d) Total number of nodes can be controlled.
(e) Number of input data is smiler.

The item(a) is fundamental, while(b) and (c) are 
strongly related to mesh quality. The item(d) cor­
responds to the controllability of computational time 
and storage. If any system satisfies the items (a) 
through (d), optimum meshes can be generated with 
the balance of computational accuracy as well as ef­
ficiency. The item (e) is also indispensable for any 
systems dealing with three-dimensional complex 
geometries.

3. Outline of the system

3.1 Definition of geometric model
Geometric modelers are utilized to define geome­

tries of analysis domains. One of commercial geome­
tric modelers, Designbase Ver. 3(LS) is employed for 
three-dimensional solid structures and shell structures. 
The advantage of Designbase is that a wide range of 
solid shapes from polyhedra to free-form surfaces can 
be designed in a unified manner. But for shell struc­
tures, a specialized selection for shell structures -first­
ly, define the three-dimensional solid structures, and 
selection of surface the shell structures as shown in
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Fig. 1. Definition of three-dimensional shell model.

Fig. 1 is employed. This method is adopted to think 
over the analyzing compound solid and shell struc­
tures. In these modelers, three-dimensional geometric 
data are stored as a tree structure of domain-surfaces 
(free-form surfaces such as Bezier or Gregory type 
surfaces) - edge(B-spline or Bezier type curves) - ver­
tices.

Designbase allows the user to start with a hierarch­
ical compositional Constructive Solid Geometry 
(CSG)-view of a part and then to refine it with local 
but consistent operations on the boundary represen­
tation of the object. By basing all operations a- 
vailable to the user on well-defined, invertible Euler- 
operations, it is possible to keep a compact represen­
tation of the complete design history of a part, and 
thus to "undo" and "redo" any sequence of opera­
tions. This encourages the designer to try out ideas 
without fear of destroying a model in which several 
hours of design time have already been invested. It 
also makes it possible to store several alternative ver­
sions of a design in a natural and efficient manner. 
As an example, Figs. 2(a) and 2(b) show a geometry

(b) Shell model
Fig. 2. Examples of geometry model.

model of three-dimensional solid and shell structures 
using Designbase.

3.2 Designation of node density distributions
In this section, the connecting process of locally-op- 

timum mesh images is dealt with using the fuzzy 
knowledge processing technique07,18)

Performances of automatic mesh generation 
methods based on node generation algorithms depend
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Fig. 3. Examples of local node patterns, (a) For a hole 
(b) For a crack tip

on how to control node spacing functions or node 
density distributions and how to generate nodes. The 
basic concept of the present mesh generation al­
gorithm is originated from the imitation of mesh gen­
eration processes by human experts on FE analyses. 
One of the aims of this algorithm is to transfer such 
experts' techniques to beginners.

In the present system, nodes are first generated, 
and then a finite element mesh is built. In general, it 
is not so easy to well control element size for a com­
plex geometry. A node density distribution over a 
whole geometry model is constructed as Allows. The 
present system stores several local nodal patterns 
such as the pattern suitable to well capture stress con­
centration, the pattern to subdivide a finite domain un­
iformly, and the pattern to subdivide a whole domain 
uniformly. A user selects some of those local nodal 
patterns, depending on their analysis purposes, and 

designates where to locate them.
For example, when either the crack of the hole ex­

ists sol야y in an infinite domain, the local node pat­
terns as shown in Figs. 3(a) and 3(b) may be re­
garded locally-optimum around the crack tip or the 
hole, respectively.

When these stress concentration fields exist closely 
to each other in the same analysis domain, a simple 
superposition of both local node patterns gives the 
result as shown in Fig. 4(b). Nam피y, extra nodes 
have to be removed from the superposed region of 
both patterns.

In the present method, the fi이d A close to the hole 
and the fi이d B close to the crack-tip are defined in 
terms of the membership functions used in the fuzzy 
set theory as shown in Fig. 4(c). For the purpose of 
simplicity, each membership function is given a func­
tion of one-dimension in the figure. In practice the 
membership function can be expressed as |l(x, y) in 
this particular example, and in three-dimensional 
cases it is a function of three-dimensional coordinates, 
i.e.卩(x, y, z). In Fig. 4(c), the horizontal axis de­
notes the location, while the vertical axis does the 
value of membership function, which indicates the 
magnitude of **loseness"  of the location to each stress 
concentration field. That is, a nodal location 이oser to 
the stress concentration field takes a larger value of 
the membership function. As for Figs. 4(b) and 4(c), 
choosing the mesh pattern with a larger value of the 
membership function in each location, one can。바ain 
an overlapped curve of both membership functions, 
and the domain can be automatically divided into the 
following two sub-domains A and B as shown in Fig. 
4(d): the sub-domain close to the crack-tip and that 
of 나)e hole. Finally, both node patterns are smoothly 
connected as shown in Fig. 4(e). This procedure of 
node generation, i.e. the connection procedure of 
both node patterns, is summarized as follows:

If &(Xp, yp) > I느(Xp, yp) for a node p(xp, yp) be- 
longing to the pattern A, then the node p is generated, 
and othenvise p is not generated.

If 卩认%, y니) > 卩A(Xq, yq) for a node q(xq, yq) be­
longing to the pattern B, then the node q is generated, 
and otherwise q is not generated.

It is apparent that the above algorithm can be easi-
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well. According to this definition, Fig. 4(d) also in­
dicates the distribution of node density over the 
whole analysis domain including the two stress con­
centration fields.

When designers do not want any special meshing, 
they can adopt uniformly subdivided mesh. It is pos­
sible to combine the present techniques with an a- 
daptive meshing technique.

3.3 Node generation
Node generation is one of time consuming 

processes in automatic mesh generation. In the 
present study, the bucketing method眼 is adopted to 
generate nodes which satisfy the distribution of node 
density over a whole analysis domain. Fig. 5 shows 
its fundamental principle, taking the previous two-di-

(b)
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Fig. 4. Superposition of node patterns based on fuzzy 
theory.

(b) Example of bucket decomppsition
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B : Group of employed nodes

• Generated nodes

• Nodes taken from Gr. A 
o Node being tested

ly extended to three-dimensional problems and any 
number of node patterns. In addition, since finer 
node patterns are generally required to place near 
stress concentration sources, it is convenient to let the 
membership function correspond to node density as

• Candidate nodes not tested 
o Tested candidate nodes

(c) Node generation in one of buckets

Fig. 5. Node generation based on bucketing method.
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mensional mesh generation as an example without 
any loss of generality. Lei us assume that the dis­
tribution of node density over a whole analysis 
domain is already given as shown in Fig. 5(a). At 
first, a super-rectangle enveloping the analysis do­
main is defined as shown in Fig. 5(b). In the three-di­
mensional solid case, a super hexahedron is utilized 
to envelop an analysis domain. Next, the super-rec­
tangle is divided into a number of small sub-rec­
tangles, each of which is named Bucket . Nodes are 
generated bucket by bucket.

At first, a number of candidate nodes with uniform 
spacing are prepared in one of buckets as shown in Fig. 
5(c). The distance of two neighboring candidate nodes 
is set to be smaller than the minimum distance of 
nodes to be generated in the relevant bucket. Next, can­
didate nodes are pick up one by one, starting from the 
left-bottom comer of the bucket, and are put into the 
bucket. A candidate node is adopted as one of the final 
nodes when it satisfies the following two criteria:

(a) The candidate node is inside the analysis 
domain(IN/OUT check).

(b) The distance between the candidate node and 
the nearest node already generated in the buck­
et satisfies the node density at the point to 
some extent.

Fig. 6. Generated appearance of nodes.

Practically, the criterion (a) is first examined buck­
et by bucket. As for buckets lying across the domain 
boundary, the criterion (a) is examined node by node. 
It should be noted here that the nodes already gen­
erated in the neighboring buckets have to be ex­
amined for the criterion (b) as well when a candidate 
node is possibly generated near the border of the 
relevant bucket. Thanks to the bucketing method, the 
number of examinations of the criterion (b) can be

Fig. 7. Delaunay triangulation produced by the iterative 
algorithm.
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reduced significantly, and then a node generation spe­
ed is remained to be proportional to the total number 
of nodes. As for three-dimensional solid geometries, 
nodes are generated in the following order : vertices, 
edges, surfaces and domain. Fig. 6 shows the gen­
erated appearance of nodes for a half of piston head.

3.4 Element generation
The Delaunay triangulation method0- 3) is utilized 

to generate tetrahedral elements from numerous 
nodes given in a geometry. After all the nodes are 
placed in the analysis domain and on its boundary, 
the system creates tetrahedral elements. As an ex­
ample, the algorithm of triangulation in the two-di­
mensional case used here is depicted in Fig. 7. Let N 
be a set of nodes, it has the property that the cir­
cumcircle of any triangle in the triangulation contains 
no point of N in its interior. The remaining points in

Domain boundary

Node generated

o
a

Control node for Delaunay triangulation

Triangles to be generated

Triangles to be removed

Triangles to be removed

Fig. 8. Techniques of avoiding mis-match elements in 
Delaunay triangulation (a) Mis-match elements 
produced in indented region.

Domain boundary

Node generated

Control node for Delaunay triangulalion

Triangles to be generated

Triangles to be removed

Triangles to be removed

Fig. 8・ Techniques of avoiding mis-match elements in 
Delaunay triangulation (b) Mis-match elements 
produced near boundary.

N will be iteratively added to the triangulation. After 
each point is added, it will be connected to the ver­
tices of its enclosing triangle. All internal edges of a 
triangulation of a finite set N are locally optimal if 
no point of N is interior to any circumcircle of a tri­
angle. In a three-dimensional domain, tetrahedral ele­
ments can be generated by the similar algorithm.

The speed of element generation by the Delaunay 
triangulation method is proportional to the number of 
nodes. If this method is utilized to generate elements 
in a geometry with indented shape, elements are inev­
itably generated even outside the geometry as shown 
in Fig. 8(a). However, such mis-match elements can 
be removed by performing the IN / OUT check for 
gravity center points of such elements. In addition, it 
is necessary to avoid the generation of those mis­
match elements crossing domain boundary by setting 
node densities on edges to be slightly higher than 
those inside the domain near the boundaries as

한국CAD/CAM학회 논문집 제 1 권 제 1 호 1996년 3월
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Fig. 9. Smoothing operation.

shown in Fig. 8(b).

3.5 Smoothing operation
The algorithm of element generation mentioned a- 

bove works well in most cases. However, element 
shapes obtained are sometimes distorted in a su- 
perposed region of several node patterns or near 
domain boundary. The smoothing method called 
'Laplacian operation'(19) is here applied to remedy 

such distorted elements as shown in Fig. 9. In this 
operation, the location of each node is replaced with 
a mean value of locations of its neighboring nodes. 
This operation is iterated several times.

3.6 Additional techniques for 3-D shell geometries
The algorithms described in section 3.2 through 3.5 

are sufficient for mesh generation of three-dimens­
ional solid geometries. However, some additional 
techniques are necessary for mesh generation of three- 
dimensional shell geometries.

Using the Delaunay triangulation technique, one 
can generate triangular elements for shell geometry, 
which was selected surfaces in three-dimensional 
shell cases, while tetrahedral elements in three-di­
mensional solid cases. In this paper, we adopted the 
following technique to generate quadrilateral elements.

Let us assume that an analysis domain is com­
pletely divided into a number of triang니ars. Two 
neighboring triangulars are converted into a single 
quadrilateral. After this operation, a few triangulars 
still exist. Then, we divide a triangular into three qua­
drilaterals, and divide a quadrilateral into for smaller 
quadrilaterals as shown in Fig. 10. Finally, we obtain 
a complete quadrilateral mesh.

4. Examples and discussions

Fig. 10. Technique
drilaterals.

of converting triangles into qua-

The performance of the system is demonstrated 
through the mesh generation of several three-di­
mensional structures. Fig. 11 to 14 show the exam­
ples of the application of this mesh generator for thre­
e-dimensional geometry. As shown in figures, a un­
iform mesh and a nonuniform mesh were connected 
very smoothly. In case of a half of piston head as 
shown in Fig. 11, it took about 60 minutes to define 
this geometry model by using Designbase. The mesh 
consists of 14,250 tetrahedral elements and 27,458 
nodes. Nodes and elements are generated in about 13 
minutes and in about 2 minutes, respectively. This is

한국CAD/CAM학회 논문집 제 1 권 제 1 호 1996년 3월
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Fig. 11. Mesh for a half of piston head (No. of nodes = 
27,458, No. of elements = 14,250).

Fig. 13. Mesh of a plate with two dissimilar surface 
cracks (No. of nodes = 16,252, NO. of elements 
=9,059).

，厂 Mvg*

阜■ I ""■…~二参茅n”-

'蛇釘也*辨 …宀E‘

Fig. 12. Mesh for a part of turbine blade (No. of nodes = 
16,252, No. of elements =： 9.059).

measured on a popular EWS, SUN SparcStation 
1O(1CPU, 50 MHz). To complete this mesh, the fol­
lowing two node patterns are utilized; (a) the base 
node pattern in which nodes are generated with un­
iform spacing over a whole analysis domain, (b) a 
special node pattern for stress concentration of four 
corners. In case of shell geometry as shown in Fig. 
14, nodes and elements were generated in about 15 
minutes and in about 5 minutes, respectively.

In general, mesh generation time increases in ac­
cordance with the increasing number of nodes or the 
number of total DOFs. Fig. 15 아lows a relationship

Fig. 14. Mesh for a symmetric 2 convolution of bellows 
(No. of nodes = 3,588, No. of elements = 3,870).

between processing time and number of nodes for a 
half of piston head. It is observed that the node gen­
eration speed hear can be carried out in the averaged 
run time proportional to the number of nodes. It is 
pointed out that the node generation algorithm is very 
important for a very large scale complex problem. To 
reduce a processing time, we are adopt the following 
improvements:

(a) Employment of the bucket method for node 
generation.

(b) Employment of the Delaunay method for ele­
ment generation.

한국CAD/CAM학회 논문집 제 1 권 제 1 호 1996년 3월
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(c) Impleme미ation of the algorithm on popular 
EWS with the C and C++ language under the 
Unix environment.

Owing to (a) and (b), mesh generation can be per­
formed in computation time of 0(n) (n : the number 
of nodes). By such improvement, the generation of 
three-dimensional meshes of ten thousands DOFs 
can be performed within half an hour in popular 
EWS.

5. Conclusions

An automatic mesh generation system for three- 
dimensional solid and shell structures consisting of 
free-form surfaces has been presented. Here several 
local node patterns are selected and are au­
tomatically superposed based on the fuzzy 
knowledge processing technique. In addition, sev­
eral computational geometry techniques were suc­
cessfully applied to node and element generation, 
whose processing speed is proportional to the total 
number of nodes. The developed system was u- 
tilized to generate meshes of three-dimensional com­
plex geometries. The key features of the present al­
gorithm are an easy control of complex three-di­
mensional node density distribution with a fewer in­
put data by means of the fuzzy knowledge pro­
cessing technique, and fast node and element gen­
eration owing to some computational geometry tech­
niques. The effectiveness of the present system is 
demonstrated through several mesh generations for 
three-dimensional complex geometry.
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