• Title/Summary/Keyword: Electrostatic Thruster

Search Result 9, Processing Time 0.02 seconds

Study of Size Effect on Electrostatic Colloid Micro Thruster (정전기장 콜로이드 마이크로 추진기관의 크기에 따른 영향에 대한 연구)

  • Yang Ji-Hye;Byun Do-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.278-281
    • /
    • 2005
  • This paper present a study of size effect on electrostatic colloid micro thruster. According to results about size effect experiments indicates that the proposed mechanism allows at less than 500 volt of operating voltage for the micro thruster.

  • PDF

Electric Propulsion (전기 추진)

  • Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.76-86
    • /
    • 2008
  • The EP(electric propulsion) is unique in that several energy sources can be utilized to produce the electric energy and that high exhaust velocity can be achieved compared to the conventional chemical propulsion. Though a lot of variety of non chemical propulsion are under study, the fact that the EP's specific impulse ranges widely from 200s to 5000s led most research to concentrate on the electric propulsion research. This paper, therefore, is aimed to introduce the up-todate existing EP family such as electrothermal, electrostatic and electromagnetic thrusters where its operating concepts, characteristics and possible variants are presented for future applications.

Preliminary Design of ECR Ion Thruster (ECR 방식 이온추력기 기본 설계)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Choi, Seung-Woon
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.14-21
    • /
    • 2010
  • Ion thruster is a kind of electrostatic thruster that use electrostatic field in order to accelerate ionized propellant. Ion thruster have characteristics of small thrust but very high specific impulse among the electric thrusters. High specific impulse can reduce propellant consumption significantly. So, ion thruster have advantage for long time and long distance mission. Recently, plans for space exploration is increasing gradually not only at traditional forward countries for space like USA, Russia and Europe, but also other countries like Japan, China and India. Exploration for superior planets and asteroids the propellant ratio can go up to about 99% when chemical propulsion is used as a cruising thruster. Therefore, latest space exploration vehicles use the ion thruster as main thruster for del-V burn and use monopropellant thrusters for attitude control. In this paper, the development process of preliminary ECR ion thruster and the ECR discharge test results will be presented.

Electrostatic Micro Thrustor with Monolithic Nozzle (일체형 노즐을 이용한 정전기 마이크로 추진 장치)

  • Yang Ji Hye;Kim Yongjae;Lee Sukhan;Han Sang Joon;Go Han Su;Byun Doyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.173-177
    • /
    • 2004
  • This paper presents a novel mechanism of electrostatic micro thruster using based on a layered electrode structure of nozzle. A comparison between experiment and simulation studies indicates that the proposed mechanism allows at less than 100 volt of operating voltage for the micro thruster.

  • PDF

Characterization of a Micro-Laser-Plasma Electrostatic-Acceleration Hybrid-Thruster

  • Akira Igari;Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.271-277
    • /
    • 2004
  • As one of the concepts of the laser/electric hybrid propulsion system, a feasibility study on possibilities of electrostatic acceleration of a laser ablation plasma induced from a solid target was conducted. Energy distributions of accelerated ions were measured by a Faraday cup. A time-of-flight measurement was also conducted for ion velocity measurement. It was found that an average speed of ions from a pure laser ablation in this case was about 20 km/sec for pulse energy of 40 $\mu$J/pulse with pulse width of 250 psec. On the other hand, through an electrostatic field with a + I ,000 V electrode, the speed could be accelerated up to 40 km/sec. It was shown that the electrode with positive potential was more effective than that with negative potential for positive-ion acceleration in laser induced plasma, or pulsed plasma, in which ions were induced with the Coulomb explosion following electrons. In addition, the ion-acceleration or deceleration strongly depended on conditions of pairs of inner diameter and electrodes gap.

  • PDF

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge (직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성)

  • Ho, Thi Thanh Trang;Shin, Jichul
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.54-62
    • /
    • 2016
  • Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

Electrostatic Interference Model of EHD Spraying from an Array of Cone Jets in Electrospray Micro-Thruster

  • Quang Tran Si Bui;Byun Do-Young;Kim Man-Young;Dat Nguyen Vu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.30-33
    • /
    • 2006
  • Onset voltage plays a crucial role in the design of a spray microthruster. This paper presents an analytical electrostatic model to predict the behavior of onset voltage in an array of emitters. The basic idea of this method is to superimpose the electric potentials obtained from each individual emitter in an array of emitters. The results show that if one emitter operates and the other neighboring emitters are dry, the potential required for cone-jet spraying generally increases as the emitter spacing decreases (due to electrical shielding). However at very close spacing the potential can decrease. If all emitters operate at the same time, the phenomenon that even at very close spacing the onset voltage required for cone-jet spraying increases merely as the emitter spacing decreases.

  • PDF

Fabrication of Nanostructures on InP(100) Surface with Irradiation of Low Energy and High Flux Ion Beams (고출력 저에너지 이온빔을 이용한 InP(100) 표면의 나노 패턴형성)

  • Park Jong Yong;Choi Hyoung Wook;Ermakov Y.;Jung Yeon Sik;Choi Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.361-369
    • /
    • 2005
  • InP(100) crystal surface was irradiated by ion beams with low energy $(180\~225\;eV)$ and high flux $(\~10^{15}/cm^2/s)$, Self-organization process induced by ion beam was investigated by examining nano structures formed during ion beam sputtering. As an ion source, an electrostatic closed electron Hall drift thruster with a broad beam size was used. While the incident angle $(\theta)$, ion flux (J), and ion fluence $(\phi)$ were changed and InP crystal was rotated, cone-like, ripple, and anistropic nanostrucuture formed on the surface were analyzed by an atomic force microscope. The wavelength of the ripple is about 40 nm smaller than ever reported values and depends on the ion flux as $\lambda{\propto}J^{-1/2}$, which is coincident with the B-H model. As the incident angle is varied, the root mean square of the surface roughness slightly increases up to the critical angle but suddenly decreases due to the decrease of sputtering yield. By the rotation of the sample, the formation of nano dots with the size of $95\~260\;nm$ is clearly observed.

Exhaust Plasma Characteristics of Direct-Current Arcjet Thrusters

  • Tahara, Hirokazu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.327-334
    • /
    • 2004
  • Spectroscopic and electrostatic probe measurements were made to examine plasma characteristics with or without a metal plate for a 10-㎾-class direct-current arcjet Heat fluxes into the plate from the plasma were also evaluated with a Nickel slug and thermocouple arrangement. Ammonia and mixtures of nitrogen and hydrogen were used. The NH$_3$ and $N_2$+3H$_2$ plasmas in the nozzle and in the downstream plume without a plate were in thermodynamical nonequilibrium states. As a result, the H-atom electronic excitation temperature and the $N_2$ molecule-rotational excitation temperature intensively decreased downstream in the nozzle although the NH molecule-rotational excitation temperature did not show an axial decrease. Each temperature was kept in a small range in the plume without a plate except for the NH rotational temperature for NH$_3$ gas. On the other hand, as approaching the plate, the thermodynamical nonequilibrium plasma came to be a temperature-equilibrium one because the plasma flow tended to stagnate in front of the plate. The electron temperature had a small radial variation near the plate. Both the electron number density and the heat flux decreased radially outward, and an increase in H$_2$ mole fraction raised them at a constant radial position. In cases with NH$_3$ and $N_2$+3H$_2$ a large number of NH radical with a radially wide distribution was considered to cause a large amount of energy loss, i.e., frozen flow loss, for arcjet thrusters.

  • PDF