DOI QR코드

DOI QR Code

Shape Characteristics of Exhaust Plume of Dual-Stage Plasma Thruster using Direct-Current Micro-Hollow Cathode Discharge

직류 마이크로 할로우 음극 방전을 이용한 이단 마이크로 플라즈마 추력기의 배기 플룸의 형상 특성

  • Ho, Thi Thanh Trang (Flight Operations Engineering Department, Vietjet Air - Ho Chi Minh City) ;
  • Shin, Jichul (School of Mechanical Engineering, University of Ulsan)
  • Received : 2016.03.11
  • Accepted : 2016.05.04
  • Published : 2016.06.01

Abstract

Micro plasma thruster (${\mu}PT$) was studied experimentally with a dual-stage micro-hollow cathode discharge (MHCD) plasma. Electrostatic-like acceleration exhibiting more directional and elongated exhaust plume was achieved by a dual layer MHCD at the total input power less than 10 W with argon flow rate of 40 sccm. V-I characteristic indicated that there was an optimal regime for dual-stage operation where the acceleration voltage across the second stage remained constant. Estimated exhaust plume length showed a similar trend to the analytic estimate of exhaust velocity which scales with an acceleration voltage. ${\mu}PT$ with multiple holes exhibited similar performance with single-hole thruster indicating that higher power loading is possible owing to decreased power through each hole. Boltzmann plot of atomic argon spectral lines showed average electron excitation temperature of about 2.6 eV (~30,170 K) in the exhaust plume.

이단 마이크로 할로우 음극 방전(MHCD) 플라즈마를 사용하는 마이크로 플라즈마 추력기(${\mu}PT$)에 대한 실험 연구가 수행되었다. 40 sccm의 아르곤 유량과 10 W 미만의 전력으로 보다 더 직진성 있고 긴 침투 길이를 가진 배기 플룸을 만드는 정전기적 가속이 이단 MHCD에 의해 발생되었다. 전압-전류 특성에서는 이단 운전 시 두 번째 단의 가속 전압이 일정하게 되는 최적 영역이 있음을 보였다. 추정된 배기 플룸의 길이가 가속 전압으로 추산된 이론적 배출 속도와 비슷한 증가 경향을 보였다. 다중 채널을 가진 마이크로 플라즈마 추력기는 동일한 총 전력량에 대하여 단일 채널 추력기와 비슷한 특성을 보여, 이는 채널 당 허용 전력량을 낮춰 전체 전력량을 높일 수 있음을 의미한다. 아르곤 원자 분광선의 볼츠만 그래프에서 배기 플룸의 평균 전자 여기 온도는 약 2.6 eV(=약 30,170 K)임이 확인되었다.

Keywords

References

  1. Milligan, D., Gestal, D., Camino, O., Pardo-Voss, P., Estublier, D. and Koppel, C., "SMART-1 electric propulsion operational experience," Proceedings of 29th International Electric Propulsion Conference, Princeton, N.J., U.S.A., IEPC-2005-245, Oct.-Nov. 2005.
  2. Schmidt, G.R., Patterson, M.J. and Benson, S.W., "The NASA evolutionary Xenon thruster (NEXT): The next step for U.S. deep space propulsion," Proceedings of 59th International Astronautical Congress, Glasgow, Scotland, IAC-08-C4.4.2, Sep-Oct. 2008.
  3. Jahn, R.G., "Physics of Electric Propulsion," pp. 6, Dover, N.Y., U.S.A., 2006.
  4. Takahashi T., Takao Y., Ichida Y., Eriguchi K. and Ono K., "Microwave-excited micro plasma thruster with helium and hydrogen propellants," Physics of Plasmas, Vol. 18, No. 6, pp. 063505, 2011. https://doi.org/10.1063/1.3596539
  5. Kc U., Bingaman J., Varghese P.L. and Raja L.L., "Studies of a direct-current micordischarge based miniaturized plasma thruster," 2nd European Conference for Aero-Space Science (EUCASS), Brussels, Belgium, Jul. 2007.
  6. Arakoni R.A., Ewing J.J. and Kushner M.J., "Microdischarges for use as microthrusters: Modelling and scaling," Journal of Physics D: Applied Physics, Vol. 41, pp. 105208, 2008. https://doi.org/10.1088/0022-3727/41/10/105208
  7. Stein W.B., Alexeenko A.A. and Hrbud I., "Performance Moldeling of a coaxial radio-frequency gas-discharge micro thruster," Journal of Propulsion and Power, Vol. 24, No. 5, pp. 1007-1017, 2008. https://doi.org/10.2514/1.34036
  8. Ito, T., Gascon N., Crawford W.S. and Cappelli MA., "Experimental characterization of a micro-hall thruster," Journal of Propulsion and Power, Vol. 23, No. 5, pp. 1068-1074, 2007. https://doi.org/10.2514/1.27140
  9. Tsay M., Hohman K. and Olson L., "Micro RF ion engine for small satellite applications," 23rd Annual AIAA/USU Conference on Small Satellites, Logan, U.T., U.S.A., Aug. 2009.
  10. Coletti M., Guarducci F. and Gabriel S.B., "A micro PPT for cubesat application: Design and preliminary experimental results," Acta Astronautica, Vol. 69, No. 3, pp. 200-208, 2011. https://doi.org/10.1016/j.actaastro.2011.03.008
  11. Martel F., Perna L. and Lozano P., "Miniature ion electrospray thrusters and performance tests on cubesats," 26th Annual AIAA/USU Conference on Small Satellites, Logan, U.T., U.S.A., pp. 13-16, Aug. 2012.
  12. Schoenbach K.H., El-Habachi A., Shi W. and Ciocca M., "High-pressure hollow cathode discharges," Plasma Sources Science and Technology, Vol. 6, No. 4, pp. 468-477, 1997. https://doi.org/10.1088/0963-0252/6/4/003
  13. Takao Y., Eriguchi K. and Ono K., "A miniature electrothermal thruster using microwave-excited microplasmas: Thruster measurement and its comparison with numerical analysis," Journal of Applied Physics, Vol. 101, No. 12, pp. 123307, 2007. https://doi.org/10.1063/1.2749336
  14. Slough J., Andreason S., Ziemba T. and Ewing JJ., AFRL project report FA8650-04-C-2514, 2005.