• 제목/요약/키워드: Electronic devices

Search Result 4,580, Processing Time 0.038 seconds

Design and Implementation of an Interactive Streaming Platform for Supporting Instant Retrieval of Product Information in Product Placement Advertisement (간접광고에서 제품 정보의 즉각적 검색을 지원하는 인터렉티브 동영상 플랫폼 설계 및 구현)

  • Im, Hyeon-Jin;Cho, Dae-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.931-938
    • /
    • 2020
  • Recently, with the expansion of the use of cross media, the public is not just watching the broadcast, but is also consuming various information about actor, stories, products, etc. that appears during the broadcast. However, the devices used for viewing and the devices used for searching are different, which is inconveniences, and due to the differences between the point in time when the desired information is provided through the search, the public has difficulty in obtaining detailed information of the target product after encountering product placement advertisement. In addition, it is difficult for advertisers to confirm the effect of product placement advertising through the reaction of viewers who have encountered product placement advertising. In this paper, we intend to propose an interactive streaming platform that supports the instant retrieval of product information to users by including product placement advertisement information in broadcasting. Through this, viewers can quickly receive detailed information of products on the screen by giving an event when a product of interest comes out while watching the broadcast, and advertisers can check the effectiveness of product placement advertisements by receiving interactive responses from viewers.

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

Characteristics Analysis Related with Structure and Size of SONOS Flash Memory Device (SONOS 플래시 메모리 소자의 구조와 크기에 따른 특성연구)

  • Yang, Seung-Dong;Oh, Jae-Sub;Park, Jeong-Gyu;Jeong, Kwang-Seok;Kim, Yu-Mi;Yun, Ho-Jin;Choi, Deuk-Sung;Lee, Hee-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.676-680
    • /
    • 2010
  • In this paper, Fin-type silicon-oxide-nitride-oxide-silicon (SONOS) flash memory are fabricated and the electrical characteristics are analyzed. Compared to the planar-type SONOS devices, Fin-type SONOS devices show good short channel effect (SCE) immunity due to the enhanced gate controllability. In memory characteristics such as program/erase speed, endurance and data retention, Fin-type SONOS flash memory are also superior to those of conventional planar-type. In addition, Fin-type SONOS device shows improved SCE immunity in accordance with the decrease of Fin width. This is known to be due to the fully depleted mode operation as the Fin width decreases. In Fin-type, however, the memory characteristic improvement is not shown in narrower Fin width. This is thought to be caused by the Fin structure where the electric field of Fin top can interference with the Fin side electric field and be lowered.

Growth of Bi-Te Based Materials by MOCVD and Fabrication of Thermoelectric Thin Film Devices (MOCVD 법에 의한 Bi-Te계 열전소재 제조 및 박막형 열전소자 제작)

  • Kwon, Sung-Do;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kim, Jin-Sang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1135-1140
    • /
    • 2008
  • Bismuth-telluride based thin film materials are grown by Metal Organic Chemical Vapor Deposition(MOCVD). A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the sample was heated by heating block and the voltage output measured. As expected for a thermoelectric generator, the voltage decreases linearly, while the power output rises to a maximum. The highest estimated power of $1.3{\mu}W$ is obtained for the temperature difference of 45 K. we provide a promising procedure for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which may have nanostructure with high thermoelectric properties.

Sensitivity Properties of Acoustic Emission Sensor Using NKN System Ceramics (NKN계 세라믹을 이용한 음향방출 센서의 감도 특성)

  • Hong, Jae-Il;Shin, Sang-Hoon;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Lee, Sang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.696-701
    • /
    • 2014
  • In this study, in order to develop coupled vibration mode piezoelectric devices for Acoustic Emission (abbreviated as AE) sensor application with outstanding displacement and piezoelectric properties have been simulated by ATILA FEM program. And, From the results of ATILA simulation, the AE sensor specimen, obtained superior electromechanical coupling factor and displacement, when the size of specimen is $3.45mm{\Phi}{\times}3.45mm$ with ratio of diameter/thickness(${\Phi}/T$)= 1.0. Therefore, AE sensor was fabricated by (Na,K,Li)(Nb,Ta) $O_3$(abbreviated as NKL-NT) system piezoelectric ceramics using coupled vibration mode. The piezoelectric properties of NKL-NT ceramics was exhibited that piezoelectric constant($d_{33}$), piezoelectric voltage constant($g_{33}$) and electro mechanical coupling factor($k_p$) have the excellent values of 261[pC/N], 40.10[$10^{-3}Vm/N$], and 0.44, respectively. The manufactured piezoelectric device with ratio of ${\Phi}/T$= 1.0 indicated the optimum values of resonant frequency(fr)= 556.5[kHz], antiresonant frequency(fa)=631.1[kHz], and effective electromechanical coupling factor(keff)= 0.473. The maximum sensitivity of the coupled vibration mode AE sensor was 55[dB] at the resonant frequency of 75[kHz]. The results show that the coupled vibration mode piezoelectric device is a promising candidate for the application AE sensor piezoelectric device.

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime

Intelligent Diagnosing Method Based on the Conditional Probability for the Pancreatic Cancer Early Detection (췌장암 조기진단을 위한 조건부 확률 기반 지능형 진단 방식)

  • JANG, IK GYU;JUNG, JOONHO;KO, JAE HO;MOON, HYUN SEOK;JO, YUNG HO
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.227-231
    • /
    • 2017
  • Early diagnosis of pancreatic cancer had been considered one of the important barrier for successful therapy since the five year survival rate after treatment of pancreatic cancer was critically low. Nonetheless, patients often miss the golden time of treatment because they rarely visit the hospital until their symptoms are severe. To overcome these problems, a lot of information about the patient's symptoms should be applied as biomarkers for early diagnosis. For this reason, a biomarker for early detection of pancreatic cancer (CA19-9) has been developed as a diagnostic kit. However, since the diagnosis is not accurate enough, pancreatic symptoms (abdominal pain, jaundice, anorexia, diabetes, etc.) and biomarkers (CA19-9) should be considered together. We develop an intelligent diagnostic system that considers CA19-9 and the incidence of pancreatic cancer for pancreatic symptoms that was determined by studying a large number of patient information. It shows a higher accuracy than one using CA19-9 alone. It may increase the survival rate of pancreatic cancer because it can diagnose pancreatic cancer early.

Development and prospect of Smart EMW Absorber for Protection of Electronic Circuits and Devices with Heat Radiating Function (전자회로 및 부품 보호용 방열기능형 스마트 전파 흡수체의 개발과 전망)

  • Kim, Dong Il;Park, Soo Hoon;Joo, Yang Ick
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1040-1046
    • /
    • 2015
  • With the rapid progress of electronics and radio communication technology, human enjoys greater freedom in information communication. However, EMW (Electro-Magnetic Wave) environments have become more complicate and difficult to control. Thus, international organizations, such as the American National Standard Institution (ANSI), Federal Communications Commission (FCC), the Comite Internationale Special des Perturbations Radio Electrique (CISPR), etc, have provided standard for controlling the EM wave environments and for the countermeasure of the electromagnetic compatibility (EMC). In this paper, the status of EMW absorbers and the goal of smart EMW absorber in the future were described. Furthermore, design method of the smart EM wave absorber with heat radiating function was suggested. The designed smart EM wave absorber has the absorption ability of more than 20 dB from 2 GHz to 2.45 GHz band, the optimum aperture (hole) size, the adjacent hole space, and the thickness of which were 6 mm, 9 mm, and 6.5 mm, respectively. Thus, it is respected that these results can be applied as various EMC devices in electronic, communication, and controlling systems.

Efficiency Improvement of Organic Light-emitting Diodes depending on Thickness of Hole Injection Materials

  • Kim, Weon-Jong;Yang, Jae-Hoon;Kim, Tag-Yong;Jeong, Joon;Lee, Young-Hwan;Hong, Jin-Woong;Park, Ha-Yong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.233-237
    • /
    • 2005
  • In the device structure of ITO/hole injection layer/N, N'-biphenyl-N, N'-bis-(1-naphenyl)-[1,1'-biphenyl]4,4'-diamine(NPB)/tris(8-hydroxyquinoline) aluminum$(Alq_3)/Al$, we investigated an effect of hole-injection materials (PTFE, PVK) on the electrical characteristics and efficiency of organic light-emitting diodes. A thermal evaporation was performed to make a thickness of NPB layer with a evaporation rate of $0.5\~1.0\;\AA/s$ in a base pressure of $5\times10^{-6}$ Torr. We measured current-voltage characteristics and efficiency with a thickness variation of hole-injection layer. The PTFE and PVK hole-injection layer improve a performance of the device in several aspects, such as good mechanical junction, reducing the operating voltage and energy band adjustment. Compared with the devices without a hole-injection layer, we have obtained that an optimal thickness of NPB was 20 nm in the device structure of $ITO/NPB/Alq_3/Al$. And using the PTFE or PVK hole-injection layer, the external quantum efficiencies of the devices were improved by $24.5\%\;and\;51.3\%$, respectively.

Analysis of the Characteristics of a White OLED using the Newly Synthesized Blue Emitting Material nitro-DPVT by Varying the Doping Concentrations of Fluorescent Dye and the Thickness of the NPB Layer (신규 합성한 청색발광재료 nitro-DPVT를 사용한 백색 유기발광다이오드의 형광색소 도핑농도 및 NPB 층의 두께 변화에 따른 특성 분석)

  • Jeon, Hyeon-Sung;Cho, Jae-Young;Oh, Hwan-Sool;Yoon, Seok-Beom
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.379-385
    • /
    • 2006
  • A stacked white organic light-emitting diode (OLED) having a blue/orange emitting layer was fabricated by synthesizing nitro-DPVT, a new derivative of the blue-emitting material DPVBi on the market. The white-emission of the two-wavelength type was successfully obtained by using both nitro-DPVT for blue~emitting material, orange emission as a host material and Rubrene for orange emission as a guest material. The basic structure of the fabricated white OLED is glass/ITO/NPB$(200{\AA})$/nitro-DPVT$(100{\AA})$/nitro-DPVT:$Rubrene(100{\AA})/BCP(70{\AA})/Alq_3(150{\AA})/Al(600{\AA})$. To evaluate the. characteristics of the devices, firstly, we varied the doping concentrations of fluorescent dye Rubrene from 0.5 % to 0.8 % to 1.3 % to 1.5 % to 3.0 % by weight. A nearly pure white-emission was obtained in CIE coordinates of (0.3259, 0.3395) when the doping concentration of Rubrene was 1.3 % at an applied voltage of 18 V. Secondly, we varied the thickness of the NPB layer from $150{\AA}\;to\;200{\AA}\;to\;250{\AA}\;to\;300{\AA}$ by fixing doping with of Rubrene at 1.3 %. A nearly pure white-emission was also obtained in CIE coordinates of (0.3304, 0.3473) when the NPB layer was $250-{\AA}$ thick at an applied voltage of 16 V. The two devices started to operate at 4 V and to emit light at 4.5 V. The external quantum efficiency was above 0.4 % when almost all of the current was injected.