• Title/Summary/Keyword: Electronic devices

Search Result 4,580, Processing Time 0.029 seconds

Design and Implementation of a Communication Middleware for Electronic Devices of Unmanned Surface Vehicle (무인 수상정 전자 장치를 위한 통신 미들웨어 설계 및 구현)

  • Bae, JongYoon;Choi, Hoon
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.53-61
    • /
    • 2019
  • In this paper, designing and implementing multi-communication middleware in multi-thread environmet through event-based synchronization method are proposed for stable data transmission of electronic optical equipment, which requires combining camera and various sensors to process multiple high-speed data. To verify the performance of the implemented communication middleware, image data and sensor data were sent to compare differences in reception-based and transmission-based cycles, and the maximum number of communication possibilities to transmit and process multiple was measured and analyzed. In addition, the proposed communication middleware's performance was verified through experiments such as validating the integrity of the transmitted data and measuring the Round Trip Time.

Method of Video Stitching based on Minimal Error Seam (최소 오류 경계를 활용한 동적 물체 기반 동영상 정합 방안)

  • Kang, Jeonho;Kim, Junsik;Kim, Sang-IL;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.142-152
    • /
    • 2019
  • There is growing interest in ultra-high-resolution content that gives a more realistic sense of presence than existing broadcast content. However, in order to provide ultra-high-resolution contents in existing broadcast services, there are limitations in view angle and resolution of the image acquisition device. In order to solve this problem, many researches on stitching, which is an image synthesis method using a plurality of input devices, have been conducted. In this paper, we propose method of dynamic object based video stitching using minimal error seam in order to overcome the temporal invariance degradation of moving objects in the stitching process of horizontally oriented videos.

4kW Class Inverter Design for Portable ESS (Portable ESS를 위한 4kW급 인버터 설계)

  • Kwon, Hyeon-Jun;Chai, Yong-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.477-484
    • /
    • 2021
  • The 4kW class inverter for portable ESS designed through this study achieves lightweight and high power density by reducing the volume of passive devices (capacitors, inductors, etc.) suitable for portable use, and minimizes heat loss of the MOSFET through the low on resistance of the MOSFET. So that high efficiency can be achieved. In addition, in order to deliver high quality energy, it is designed to have a low THDV in accordance with the current KEPCO business handling guidelines, and is designed to output a sine wave with low distortion.

Electronic Structure and Half-Metallicity in the Zr2RuZ (Z = Ga, In, Tl, Ge, Sn, and Pb) Heusler Alloys

  • Eftekhari, A.;Ahmadian, F.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1370-1376
    • /
    • 2018
  • The electronic structures, magnetic properties and half-metallicity in $Zr_2RuZ$ (Z = Ga, In, Tl, Ge, Sn, and Pb) alloys with $AlCu_2Mn-$ and $CuHg_2Ti$-type structures were investigated using first-principles density functional theory (DFT) calculations. The calculations showed that $Zr_2RuIn$, $Zr_2RuTl$, $Zr_2RuSn$, and $Zr_2RuPb$ compounds with $CuHg_2Ti$-type structures were half-metallic ferromagnets with half-metallic band gaps of 0.18, 0.24, 0.22, and 0.27 eV, respectively. The half-metallicity originated from d-d and covalent hybridizations between the transition metals Zr and Ru. The total magnetic moments of the $Zr_2RuZ$ (Z = In, Tl, Sn, and Pb) compounds with $CuHg_2Ti$-type structures were integer values of $1{\mu}B$ and $2{\mu}B$, which is in agreement with Slater-Pauling rule ($M_{tot}=Z_{tot}-18$). Among these compounds, $Zr_2RuIn$ and $Zr_2RuTl$ were half-metals over relatively wide regions of the lattice constants, indicating that these two new Heusler alloys are ideal candidates for use in spintronic devices.

A Study on Polymer Replica Materials for Nanotransfer Printing (패턴전사프린팅용 고분자 복제 소재 연구)

  • Kang, Young Lim;Park, Woon Ik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2021
  • For the past several decades, various next-generation patterning methods have been developed to obtain well-designed nano-to-micro structures, such as imprint lithography, nanotransfer printing (nTP), directed self-assembly (DSA), E-beam lithography, and so on. Especially, nTP process has much attention due to its low processing cost, short processing time, and good compatibility with other patterning techniques in achieving the formation of high-resolution functional patterns. To transfer functional patterns onto desirable substrates, the use of soft materials is required for precise replication of master mold. Here, we introduce a simple and practical nTP method to create highly ordered structures using various polymeric replica materials. We found that polymethyl methacrylate (PMMA), polystyrene (PS), and polyvinylpyridine (PVP) are possible candidates for replica materials for reliable duplication of Si master mold based on systematic analysis of pattern visualization. Furthermore, we successfully obtained well-defined metal and oxide nanostructures with functionality on target substrates by using replica patterns, through deposition and transfer process. We expect that the several candidates of replica materials can be exploited for effective nanofabrication of complex electronic devices.

Printing of Polymer Dielectric via Optimal Blade Coating for Large-scale Low-Leakage Capacitors (대면적 저누설 커패시터를 위한 최적화 블레이드 코팅 기반 고분자 유전체 프린팅)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 2021
  • We demonstrated a polymer dielectric with low leakage characteristics through an optimal blade coating method for low-cost and large-scale fabrication of metal-insulator-metal (MIM) capacitors. Cross-linked poly(4-vinylphenol) (C-PVP), which is a typically used polymer dielectric, was coated on a 10 × 10 cm indium-tin-oxide (ITO) deposited glass substrate by changing the deposition temperature (TD) and coating velocity (VC) in the blade coating. During the blade coating, the thickness of the thin c-PVP varied depending on TD and VC owing to the 'Landau-Levich (LL) regime'. The c-PVP-dielectric-based MIM capacitor fabricated in this study showed the lowest leakage current characteristics (10-6 A/㎠ at 1.2 MV/㎠, annealing at 200 ℃) and uniform electrical characteristics when TD was 30 ℃ and VC was 5 mm/s. In addition, at TD = 30 ℃, stable leakage characteristics were confirmed when a different electric field was applied. These results are expected to positively contribute to applications with next-generation electronic devices.

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew;Knapp, Jordan;Lennox, Barry;Walters, Steve;Watts, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2198-2203
    • /
    • 2022
  • As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Device Optimization for Suppression of Short-Channel Effects in Bulk FinFET with Vacuum Gate Spacer (진공 게이트 스페이서를 지니는 Bulk FinFET의 단채널효과 억제를 위한 소자구조 최적화 연구)

  • Yeon, Ji-Yeong;Lee, Khwang-Sun;Yoon, Sung-Su;Yeon, Ju-Won;Bae, Hagyoul;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.576-580
    • /
    • 2022
  • Semiconductor devices have evolved from 2D planar FETs to 3D bulk FinFETs, with aggressive device scaling. Bulk FinFETs make it possible to suppress short-channel effects. In addition, the use of low-k dielectric materials as a vacuum gate spacer have been suggested to improve the AC characteristics of the bulk FinFET. However, although the vacuum gate spacer is effective, correlation between the vacuum gate spacer and the short-channel-effects have not yet been compared or discussed. Using a 3D TCAD simulator, this paper demonstrates how to optimize bulk FinFETs including a vacuum gate spacer and to suppress short-channel effects.

Design of STM32-based Quadrotor UAV Control System

  • Haocong, Cai;Zhigang, Wu;Min, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.353-368
    • /
    • 2023
  • The four wing unmanned aerial vehicle owns the characteristics of small size, light weight, convenient operation and well stability. But it is easily disturbed by external environmental factors during flight with these disadvantages of short endurance and poor attitude solving ability. For solving these problems, a microprocessor based on STM32 chip is designed and the overall development is completed by the resources such as built-in timer and multi-function mode general-purpose input/output provided by the master micro controller unit, together with radio receiver, attitude meter, barometer, electronic speed control and other devices. The unmanned aerial vehicle can be remotely controlled and send radio waves to its corresponding receiver, control the analog level change of its corresponding channel pins. The master control chip can analyze and process the data to send multiple sets pulse signals of pulse width modulation to each electronic speed control. Then the electronic speed control will transform different pulse signals into different sizes of current value to drive the motor located in each direction of the frame to generate different rotational speed and generate lift force. To control the body of the unmanned aerial vehicle, so as to achieve the operator's requirements for attitude control, the PID controller based on Kalman filter is used to achieve quick response time and control accuracy. Test results show that the design is feasible.

Morphological Changes in Quadriceps Muscles through 3-Week Combined Exercise using a Wearable Robot (EX1) in Young Adult

  • Jang-hoon Shin;Naeun Byeon;Heeju Yu;DaeEun Kim;Byungmun Kang;Dongwoo Kim;Hwang-jae Lee;Wan-hee Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.1
    • /
    • pp.33-42
    • /
    • 2023
  • Objective: This study aims to analyze the effect of regular exercise through the combined walking-oriented aerobic and resistance exercises using EX1 in young adults. Design: Experimental one group pre and post test Methods: Participants comprised17 healthy young adults. All subjects performed a combined exercise program for 10 times using EX1. We measured quadriceps muscle thickness using ultrasound. Additionally, the hand grip strength test, and sit and reach test were performed before and after the exercise. Through paired t-test, we investigated whether there was a statistically significant difference in the measurement results after exercise program. Results: The rectus femoris muscle contraction ratio showed significant difference after exercise(P< 0.01). In the sit and reach test, flexibility showed significant difference after exercise(P < 0.01). The hand grip strength test also showed significant difference after exercise(P < 0.05). Conclusions: Healthy young adults can effectively perform various exercises commonly performed in daily life using EX1.