• Title/Summary/Keyword: Electron transport coefficients

Search Result 97, Processing Time 0.024 seconds

A Study on the Electron Transport Coefficients in Hydrogen Molecular ($H_2$의 전자 수송 계수에 관한 연구)

  • Park, Eun-Joo;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1402_1403
    • /
    • 2009
  • The electron transport coefficients in hydrogen molecular is calculated over the range of E/N values from 0.01 to 300 Td and at temperature state of 77K, 293K and 300K by Boltzmann equation method. The results gained that the values of the electron transport coefficients such as the electron drift velocity, the electron ionization coefficients, longitudinal diffusion coefficients consisted with the results of measured and calculated for a ranage of E/N.

  • PDF

A study on the electron transport coefficients using monte carlo method in argon gas (몬테칼로법을 이용한 Ar기체의 전자수송계수에 관한 연구)

  • 하성철;전병훈
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.685-692
    • /
    • 1995
  • The electron transport coefficients in argon gas is studied over the range of E/N values from 85 to 566 Td by the Monte Carlo method considering the latest cross section data. The result of the Monte Carlo method analysis shows that the value of the electron transport coefficients such as the electron drift velocity, the ratio of the longitudinal and transverse diffusion coefficients to the mobility. It is also found that the electron transport coefficients calculated by the two-term approximation analysis agree well with those by Monte Carlo calculation. The electron energy distributions function were analysed in argon at E/N=283, and 566 Td for a case of the equilibrium region in the mean electron energy. A momentum transfer cross section for the argon atom which was consistent with both of the present electron transport coefficients was derived over the range of mean electron energy from 10.3 to 14.5 eV, also suggested as a set of electron cross section for argon atom. The validity of the results obtained has been confirmed by a Monte Carlo simulation method.

  • PDF

Electron Collision Cross Sections for the TRIES Molecule and Electron Transport Coefficients in TRIES-Ar and TRIES-O2 Mixtures

  • Tuoi, Phan Thi;Tuan, Do Anh;Hien, Pham Xuan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1855-1862
    • /
    • 2018
  • A reliable set of low-energy electron collision cross sections for the triethoxysilane (TRIES) molecule was derived based on the measured electron transport coefficients for a pure TRIES molecule by using an electron swarm method and a two-term approximation of the Boltzmann equation. The electron transport coefficients calculated using the derived set are in good agreement with experimental value over a wide range of E/N values (ratio of the electric field E to the neutral number density N). The present electron collision cross section set for the TRIES molecule, therefore, is the most reliable so far for plasma discharges and for materials processing using the TRIES molecule. Moreover, the electron transport coefficients for the TRIES-Ar and the $TRIES-O_2$ mixtures were also calculated and analyzed over a wide range of E/N for the first time.

The study of electron transport coefficients in pure $CO_2$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CO_2$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Kim, Ji-Yeon;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.164-167
    • /
    • 2001
  • The electron transport coefficients, the electron drift velocity W, the longitudinal diffusion coefficient $ND_L$ and $D_L/{\mu}$, in pure $CO_2$ were calculated over the wide E/N range from 0.01 to 500 Td at 1 Torr by two-term approximation of the Boltzmann equation for determination of electron collision cross sections set and for quantitative characteristic analysis of $CO_2$ molecular gas. And for propriety of two-term approximation of Boltzmann equation analysis, the calculated results compared with the electron transport coefficients measured by Nakamura.

  • PDF

The study of electron transport coefficients in pure $CF_4$ by 2-term approximation of the Boltzmann equation (2항근사 볼츠만 방정식을 이용한 $CF_4$분자가스의 전자수송계수의 해석)

  • Jeon, Byung-Hoon;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.29-32
    • /
    • 2001
  • We measured the electron transport coefficients(the electron drift velocity, W, and the longitudinal diffusion coefficient, $D_L$) in pure $CF_4$ over the E/N range from 0.04 Td to 250 Td by the double shutter drift tube. And these electron transport coefficients in pure $CF_4$ were calculated over the E/N range from 0.01 to 250 Td at 1 Torr by using the two-term approximation of the Boltzmann equation.

  • PDF

Analysis of Electron Transport Coefficients in Low Voltage Air Circuit Breaker Using MCS and BE (몬테칼로 시뮬레이션과 볼츠만 방정식을 이용한 저전압 기중차단기의 전자수송계수 특성파악)

  • 하성철;서상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.168-172
    • /
    • 2003
  • The electron transport coefficients in Air is analysed in range of E/Nvalues from 100~1000(Td) by a MCS and BE method. This paper have calculated W, ND$\sub$L/, ND$\sub$T/, Mean energy mixtures by N$_2$+O$_2$. The results gained that the values of the electron swarm parameters such as the electron drift velocity, longitudinal and transverse diffusion coefficients.

Analysis of Electron Transport Coefficients in Binary Mixtures of TEOS Gas with Kr, Xe, He and Ne Gases for Using in Plasma Assisted Thin-film Deposition

  • Tuan, Do Anh
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.455-462
    • /
    • 2016
  • The electron transport coefficients in not only pure atoms and molecules but also in the binary gas mixtures are necessary, especially on understanding quantitatively plasma phenomena and ionized gases. Electron transport coefficients (electron drift velocity, density-normalized longitudinal diffusion coefficient, and density-normalized effective ionization coefficient) in binary mixtures of TEOS gas with buffer gases such as Kr, Xe, He, and Ne gases, therefore, was analyzed and calculated by a two-term approximation of the Boltzmann equation in the E/N range (ratio of the electric field E to the neutral number density N) of 0.1 - 1000 Td (1 Td = 10−17 V.cm2). These binary gas mixtures can be considered to use as the silicon sources in many industrial applications depending on mixture ratio and particular application of gas, especially on plasma assisted thin-film deposition.

The analysis of electron transport coefficients in $CF_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 $CF_4$ 분자가스의 전자수송계수 해석)

  • Jeon, Byung-Hoon;Park, Jae-June;Ha, Sung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method. we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure $CF_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method. we confirmed erroneous calculated results of transport coefficients for $CF_{4}$ molecule treated in this paper having 'C2v symmetry' as $C_{3}H_{8}$ and $C_{3}F_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and $ND_L$) in pure $CF_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at lames-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.

  • PDF

The analysis of electron transport coefficients in CF$_4$ molecular gas by multi-term approximation of the Boltzmann equation (다항근사 볼츠만 방정식에 의한 CF$_4$분자가스의 전자수송계수 해석)

  • 전병훈;박재준;하성철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.141-144
    • /
    • 2001
  • An accurate cross sections set are necessary for the quantitatively understanding and modeling of plasma phenomena. By using the electron swarm method, we determine an accurate electron cross sections set for objective atoms or molecule at low electron energy range. In previous paper, we calculated the electron transport coefficients in pure CF$_4$ molecular gas by using two-term approximation of the Boltzmann equation. And by using this simulation method, we confirmed erroneous calculated results of transport coefficients for CF$_4$ molecule treated in this paper having 'C2v symmetry'as C$_3$H$_{8}$ and C$_3$F$_{8}$ which have large vibrational excitation cross sections which may exceed elastic momentum transfer cross section. Therefore, in this paper, we calculated the electron transport coefficients(W and ND$_{L}$) in pure CF$_4$ gas by using multi-term approximation of the Boltzmann equation by Robson and Ness which was developed at James-Cook university, and discussed an application and/or validity of the calculation method by comparing the calculated results by two-term and multi-term approximation code.e.

  • PDF

The measurement of electron drift velocity and analysis of transport coefficients in SF$_6$+$N_2$ gas (SF$_6$+$N_2$혼합기체의 전자 이동속도 측정 및 수송계수 해석)

  • 하성철;하영선
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.462-472
    • /
    • 1994
  • In this paper, electron drift velocity is experimentally measured in SF$_{6}$+N$_{2}$ Gas by induced cur-rent method and quantitaive production of electron transport coefficient is calculated by backward-prolongation of Boltzmann equation. Then electron energy distribution function and attachment coefficients are calculated. This paper can use the electron drift velocity by experimentally and the electron transport coefficient by calculated as a basic data of mixed Gas by comparing and investigating.g.

  • PDF