• Title/Summary/Keyword: Electron emission

Search Result 2,177, Processing Time 0.029 seconds

Photoluminescence Study on O-plasma Treated ZnO Thin Films

  • Cho, Jaewon;Choi, Jinsung;Yu, SeGi;Rhee, Seuk Joo
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.543-547
    • /
    • 2013
  • A temperature dependent (10K-290K) photoluminescence (PL) study for two differently prepared ZnO thin films (as-grown and O-plasma treated) is presented. Four characteristic peaks were identified for both samples: (i) neutral donor-bound excitons ($D^oX$), (ii) two electron satellites (TES), (iii) phonon replica of $D^oX$ ($D^oX$-1LO), and (iv) donor-acceptor pair transition (DAP). As the sample temperature increased, $D^oX$-1LO and DAP transitions became indistinct. This was accompanied by newly-rising emission of free electron-acceptor transitions (e, $A^o$). The spectral evolution with temperature for as-grown samples also showed the optical emission from free excitons, which became dominant at higher temperatures. Some features related to O-plasma were identified in PL spectra: (i) different positions of TES transitions (28meV lower than $D^oX$ for as-grown samples and 35meV for O-plasma treated samples), (ii) the decrease of spectral intensity in both emissions of $D^oX$ and DAP after O-plasma treatment, and (iii) no noticeable transition from free excitons after the O-plasma treatment.

Fabrication of the Solution-Derived BiAlO Thin Film by Using Brush Coating Process for Liquid Crystal Device (브러쉬 코팅 공정을 이용한 용액 기반 BiAlO 박막의 제작과 액정 소자에의 응용)

  • Lee, Ju Hwan;Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.321-326
    • /
    • 2021
  • We fabricated BiAlO thin film by a solution process with a brush coating to be used as liquid crystal (LC) alignment layer. Solution-processed BiAlO was coated on the glass substrate by brush process. Prepared thin films were annealed at different temperatures of 80℃, 180℃, and 280℃. To verify whether the BiAlO film was formed properly, X-ray photoelectron spectroscopy analysis was performed on Bi and Al. Using a crystal rotation method by polarized optical microscopy, LC alignment state was evaluated. At the annealing temperature of 280℃, the uniform homogenous LC alignment was achieved. To reveal the mechanism of LC alignment by brush coating, field emission scanning electron microscope was used. Through this analysis, spin-coated and brush coated film surface were compared. It was revealed that physical anisotropy was induced by brush coating at a high annealing temperature. Particles were aligned in one direction along which brush coating was made, resulting in a physical anisotropy that affects a uniform LC alignment. Therefore, it was confirmed that brush coating combined with BiAlO thin film annealed at high temperature has a significant potential for LC alignment.

A Study on Dielectric Properties of Flame-Retardant Silicone Rubber Due to Silica Amount Change (실리카 양 변화에 의한 난연성 실리콘 고무의 유전특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.364-370
    • /
    • 2021
  • In this study, the dielectric properties of flame retardant silicone rubber mixed with the amount of silica 50~65 phr were measured at frequencies ranging from 1 to 2.7 MHz and temperature ranges from 30℃ to 160℃. The permittivity decreased with higher frequencies and higher temperatures, and tanδ are thought to have decreased due to the increased heat oxidation of the methyl group bound to Si, which increased the hardness of silicone rubber. FT-IR analysis of specimen mixed with SiO2 of 50~65 phr showed oscillations of OH groups bound to SiO2 between wavenumber 3,600 and 3,300. As a result of analyzing surface components by Energy Dispersive X-ray (EDX) on all specimens mixed with SiO2 of 50 to 65 phr, all specimens contained Si, and the analysis by field emission scanning electron (FE-SEM) confirmed that about 1~5 ㎛ particles were distributed regularly on the surface of the specimens.

Terahertz Light Source Using Spin Angular Momentum: Spintronic Terahertz Emission (스핀 각 운동량을 이용한 테라헤르츠파 광원: 스핀트로닉 테라헤르츠 발생)

  • Kyusup Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.5
    • /
    • pp.218-227
    • /
    • 2024
  • The tabletop-scale terahertz (THz) light sources using femtosecond laser pulses are primarily based on spatiotemporal changes in electron charge. This review introduces a new scheme where the spin angular momentum of electrons contributes to THz wave generation. By focusing on laser-induced spin current generation in ferromagnets, we review the outstanding characteristics observed in nanometric ferromagnetic/nonmagnetic thin films, including high power, ultra-broadband, and polarization tunability. Additionally, research on various application technologies is introduced, including the development of devices combining semiconductors, large-area THz devices, and flexible THz devices, all based on nanoscale thin films. Through this, the principle of spintronic THz emission can be understood, contributing the advancement of various application studies utilizing electron spin as a next-generation THz optical device.

Light Emission and Plasma Property in the External Electrode Fluorescent Lamps (외부전극 형광램프의 발광 및 플라즈마 특성)

  • Ahn, S.;Lee, M.;Jeong, J.;Kim, J.;Yoo, D.;Koo, J.;Kang, J.;Hong, B.;Choi, E.;Cho, G.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.172-180
    • /
    • 2007
  • A new diagnostics of plasma electron temperature and plasma density is introduced with the observation of the light emission along the tube of external electrode fluorescent lamps. With two different methods operating an external electrode fluorescent lamp of outer diameter 4.0 mm and length 860 mm for the back-light source of 37-inch LCD-TVs, the lighting modes and the plasma properties are investigated. In the center balance operation, the light-emission propagates simultaneously from both sides of the high voltage electrodes to the center of the lamp, while in conventional operation the light-emission propagates from the one end of a high voltage to the other ground electrode. In the operation value of luminance $10,000{\sim}15,000cd/m^2$, the electron plasma thermal energy $(kT_e)$ is about $1.3{\sim}2.7eV$ with the electron density $(n_e)$ is about $(1.6{\sim}3.6){\times}10^{16}m^{-3}$.

A Study on the Evaluation of Cleaning Ability Using Optically Stimulated Electron Emission Method (광전자방출(OSEE)법을 이용한 세정성 평가 연구)

  • Min, Hye-Jin;Shin, Jin-Ho;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • In order to choose alternative environmental-friendly cleaning agents, it is very important in the present point that the systematic selection procedures should be introduced and applied to the industry through the evaluation of their cleaning ability, environmental characteristics, and economical factors, and that the objective and effective evaluation methods of cleanliness should be established for the industry. Thus, a novel cleaning evaluation method utilizing optically stimulated electron emission (OSEE) among various methods of cleaning ability was studied in this study. The contaminants used in this cleaning experiments were flux, solder, grease, cutting oil, and mixed soil of 35% grease and 65% cutting oil. The cleaning agents developed or prepared in our laboratory were employed and their cleaning ability were comparatively evaluated by the OSEE, gravimetry and contact angle methods. The experimental results in this work showed that flux cleaning efficiency measured by the OSEE method was similar to that of the gravimetric method, but that the OSEE method could not be compared with gravimetric method for the case of solder or grease cleaning because the contaminants radiate or absorb ultra-violet light. In case of cutting oil cleaning, the gravimetric method indicated its limitation of cleaning efficiency of cutting oil since it showed cleaning efficiency of 100%, even though residual soil remaining on the substrate surface a little after its cleaning. The comparative experimental results of cleaning ability evaluated by the OSEE- and contact angle measurement methods showed that they were similar in case of cleaning of flux, mixed soil and cutting oil. It was judged that the contact angle measurement method could evaluate the cleaning ability more precisely than the OSEE method for cleaning solder and grease.

  • PDF

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

Fabrication of the Low Driving Voltage ZnS:Mn EL Device and Investigation of its Electro-optical Properties (저전압구동 ZnS:Mn EL device의 제작 및 전기 광학적 특성조사)

  • Kim, Jae-Beom;Kim, Do-Hyeong;Jang, Gyeong-Dong;Bae, Jong-Gyu;Nam, Gyeong-Yeop;Lee, Sang-Yun;Jo, Gyeong-Je;Jang, Hun-Sik;Lee, Hyeon-Jeong;Lee, Dong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.290-294
    • /
    • 2000
  • ZnS:Mn TFEL devices were fabricated by electron-beam evaporation method and then the electro-optical properties were investigated. To investigate the capacitance which was due to oxygen vacancy at the $Ta_2O_5$ thin film, AES(Auger Electron Spectroscopy) and C-F(capacitance-frequency) measurements were used. It was found that the capacitance was decreased by annealing the $Ta_2O_5$ film in oxygen ambience. From EL emission measurement, we observed the EL emission spectrum which had the peak range from 550nm and 650nm. This emission is associated with the transition from $^4T_1(^4G)$ first excited state to $^6A_1(^6S)$ ground state in the $3d^5$ energy level configuration of $Mn^{2+}$ occurs. The threshold voltage of EL device with $Ta_2O_5$ insulator layer was found to be 24V~28V. The CIE color coordinates of these emission are X=0.5151, Y=0.4202 which is yellowish orange emitting. The EL device using $Ta_2O_5$ insulator layer can be driven with a low voltage which is beneficial to the practical application.

  • PDF

Study on Electron Temperature Diagnostic and the ITO Thin Film Characteristics of the Plasma Emission Intensity by the Oxygen Gas Flow (산소 유량별 플라즈마 방출광원 세기에 따른 전자온도 진단과 산화주석박막 특성연구)

  • Park, Hye Jin;Choi, Jin-Woo;Jo, Tae Hoon;Yun, Myoung Soo;Kwon, Gi-Chung
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.92-97
    • /
    • 2016
  • The plasma has been used in various industrial fields of semiconductors, displays, transparent electrode and so on. Plasma diagnostics is critical to the uniform process and the product. We use the electron temperature of the various plasma parameters for the diagnosis of plasma. Generally, the range of the electron temperature which is used in a semiconductor process used the range of 1 eV to 10 eV. The difference of electron temperature of 0.5 eV has a influence in plasma process. The electron temperature can be measured by the electrical method and the optical method. Measurement of electron temperature for various gas flow rates was performed in DC-magnetron sputter and Inductively Coupled Plasma. The physical properties of the thin film were also determined by changing electron temperatures. The transmittance was measured using the integrating sphere, and wavelength range was measured at 300 ~ 1100 nm. We obtain the thin film of the mobility, resistivity and carrier concentration using the hall measurement system. As to the electron temperature increase, optical and electrical properties decrease. We determine it was influenced by the oxygen flow ratio and plasma.

Optical Properties and Field Emission of ZnO Nanorods Grown on p-Type Porous Si

  • Park, Taehee;Park, Eunkyung;Ahn, Juwon;Lee, Jungwoo;Lee, Jongtaek;Lee, Sang-Hwa;Kim, Jae-Yong;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1779-1782
    • /
    • 2013
  • N-type ZnO nanorods were grown on p-type porous silicon using a chemical bath deposition (CBD) method (p-n diode). The structure and geometry of the device were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) while the optoelectronic properties were investigated by UV/Vis absorption spectrometry as well as photoluminescence and electroluminescence measurements. The field emission (FE) properties of the device were also measured and its turn-on field and current at 6 $V/{\mu}m$ were determined. In principle, the growth of ZnO nanorods on porous siicon for optoelectronic applications is possible.