# 브러쉬 코팅 공정을 이용한 용액 기반 BiAlO 박막의 제작과 액정 소자에의 응용

## 이주환1, 김대현200

<sup>1</sup> 연세대학교 전기전자공학부 <sup>2</sup> 한국퐄리텍대학 스마트전기학과

## Fabrication of the Solution-Derived BiAlO Thin Film by Using Brush Coating Process for Liquid Crystal Device

Ju Hwan Lee1 and Dai-Hyun Kim2

<sup>1</sup> Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea <sup>2</sup> Department of Smart Electric, Korea Polytechnic, Incheon 21417, Korea

(Received May 15, 2021; Revised June 14, 2021; Accepted June 14, 2021)

Abstract: We fabricated BiAIO thin film by a solution process with a brush coating to be used as liquid crystal (LC) alignment layer. Solution-processed BiAlO was coated on the glass substrate by brush process. Prepared thin films were annealed at different temperatures of 80 °C, 180 °C, and 280 °C. To verify whether the BiAlO film was formed properly, X-ray photoelectron spectroscopy analysis was performed on Bi and Al. Using a crystal rotation method by polarized optical microscopy, LC alignment state was evaluated. At the annealing temperature of 280°C, the uniform homogenous LC alignment was achieved. To reveal the mechanism of LC alignment by brush coating, field emission scanning electron microscope was used. Through this analysis, spin-coated and brush coated film surface were compared. It was revealed that physical anisotropy was induced by brush coating at a high annealing temperature. Particles were aligned in one direction along which brush coating was made, resulting in a physical anisotropy that affects a uniform LC alignment. Therefore, it was confirmed that brush coating combined with BiAlO thin film annealed at high temperature has a significant potential for LC alignment.

Keywords: Brush coating, BiAlO thin film, Liquid crystals, X-ray photoelectron spectroscopy, Field emission scanning electron microscope

### 1. 서 론

빠른 응답속도와 저전력 구동, 그리고 우수한 해상도 등의 난 성능을 구현하기 위해 가장 필수적인 기술은 액정 배향

☑ Dai-Hyun Kim; kdh978@naver.com

Copyright ©2021 KIEEME. All rights reserved.

장점들을 바탕으로 디스플레이 산업의 발전에 있어 핵심 적인 역할을 하고 있다 [1-3]. 현재는 고품질 고해상도 소 액정 디스플레이(liquid crystal display, LCD) 소자는 자 제작에 초점을 맞춘 연구가 진행되고 있으며, 이런 뛰어 공정 기술이다. 액정 배향은 소자 내에 주입된 액정들을 일 정한 방향으로 정렬시키는 기술로, 이것을 통해 백 라이트 에서 발생하는 빛의 산란을 제어한다. 그리고 소자에 부착 되는 편광 필름을 이용하여 이 빛을 차단하거나 투과시킨 다. 이러한 액정 배향을 구현하는 데 가장 보편적으로 사용

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

되는 러빙(rubbing)법으로, 배향막의 폴리머를 러빙 천을 이용하여 한 방향으로 정렬시켜 균일한 액정 배향을 구현 하는 기술이다 [4]. 이 공정에 의해 배향막에는 마이크로 그루브(microgroove)가 형성되며, 이것을 통해 표면에 물 리적 이방성이 발생된다. 결과적으로 이 표면의 이방성으 로 인해 액정 분자들이 한 방향으로 정렬되게 된다. 현재 러빙법을 대체하며 배향막 표면에 물리 화학적 이방성을 발생시키기 위한 기술들이 연구되고 있으며, 대표적으로 는 광 배향법 [5], 나노 임프린트 리소그래피 [6], 이온빔 공 정 [7] 등이 있다.

배향 공정을 진행하기 위해서는 우선 기판 위에 배향막 을 형성해야 하며, 이 과정에서 증착 및 박막 코팅 공정이 요구된다. 대표적인 박막 증착 방법으로는 물리적 기상증 착방법(physical vapor deposition)과 화학적 기상증착방 법(chemical vapor deposition) [8], 스퍼터링(spurttering) [9], 그리고 용액 공정(solution process) 등이 있다 [10]. 이 방법들 중 용액 공정은 타 공정 대비 낮은 비용과 온도 가 요구되며, 쉽게 제어할 수 있다는 장점들을 가지고 있 다. 그리고 이 공정을 사용할 경우 제작한 용액을 기판 위 에 박막으로 제작하기 위해 코팅 공정이 필요하다. 연구 및 공정 분야에서 많이 도입되어 사용되고 있는 코팅 공정으 로는 스핀 코팅(spin-coating) [11]과 딥 코팅(dip coating) [12], 그리고 브러쉬 코팅(brush coating) 등이 있다 [13]. 이 중 브러쉬 공정은 공정에서 사용되는 물질의 방향성 제 어가 가능하며 저비용 공정이기 때문에 다양한 분야에서 사용할 수 있다.

본 논문에서는 이 용액 공정과 브러쉬 공정을 이용, 산화 비스무트 알루미늄(bismuth aluminum oxide, BiAlO) 박막을 기판 위에 형성한 뒤 액정 배향막으로 사용하였다. 기판 위 브러쉬 공정으로 박막이 제대로 형성되어 있는지 확인하기 위해 X선 광전자 분광법(X-ray photoelectron spectroscopy, XPS)으로 표면의 화학 분석을 실시하였다. 이렇게 제작한 배향막 위 액정 분자들의 배향 상태를 확인 하기 위해서 편광 광학 현미경(polarized optical microscopy, POM)을 통해 편광판 사이 빛의 차단 상대 를 확인하였다. 그리고 결정 회전법을 이용하여 액정 분자 들이 형성하고 있는 프리틸트 각을 측정하였다. 또한 액정 분자들이 브러쉬 코팅을 한 박막 위에서 한쪽 방향으로 배 향이 이루어지는 메커니즘을 분석하기 위해 전계방출형 주 사전자현미경(field emission scanning electron microscope, FE-SEM)을 이용해 물리적 표면 분석을 진 행하였다.

#### 2. 실험 및 공정

브러쉬 공정을 이용한 BiAlO 박막을 제작하기 위해 용 액 공정을 사용하였다. 비스무트와 알루미늄 전구체들을 2-메톡시에탄올에 녹인 뒤, 아세트산과 에탄올아민을 안 정제로 추가하였다. 그리고 교반기 위에 용액을 안치하여 85℃, 420 rpm의 조건에서 2시간 동안 교반시키고 최소 하루 이상 에이징 과정을 거쳤다. 박막이 형성될 기판으로 는 ITO가 코팅된 유리를 사용하였으며, 사용되기 전 아세 톤과 메탄올, 탈이온수를 이용하여 세정하였다. 준비된 용 액은 그림 1에 그려진 것처럼 브러쉬에 충분히 적셔진 뒤, 브러쉬 공정을 이용하여 준비한 기판 위에 코팅되었다 [그 림 1(b)]. 코팅된 샘플들은 각각 80℃와 180℃, 280℃의 온 도의 퍼니스 안에서 2시간 동안 소성되었으며, 이 샘플들 을 배향막으로 이용하여 anti-parallel 액정 셀을 제작하 였다. 60 µm의 셀 갭으로 제작된 액정 셀은 모세관 힘을 이용, 양의 액정(Merck; ne=1.5859, no=1.4872, and Δε=8.2)으로 채워졌으며, POM (BXP51, Olympus, Japan)과 결정 회전법(TBA 107, Autronic)을 이용하여 액정 배향 특성을 분석하였다. 브러쉬 공정과 소성 온도에 따른 박막의 차이와 액정 배향과의 관계성을 분석하기 위 해 FE-SEM (S-4300SE, Hitachi)를 이용하여 박막 표면 을 분석하였다. 분석의 정확성을 높이기 위해 각 소성 온도 별 스핀 코팅으로 제작한 박막을 동시에 확인하였다. 그리 고 이 박막은 30초 3,000 rpm의 조건으로 스핀 코팅되었다. 추가적으로 XPS (ES-CALAB 220i-XL, VG Scientific)를 이용하여 제작한 박막의 화학 구조를 확인하였다.



**Fig. 1.** Schematic of the brush coating process using BiAlO solution. The brush to be used was sufficiently moistened with the prepared BiAlO solution. Then, brushing in one direction created a coated area on the glass substrate.



Fig. 2. XPS spectra of the Al 2p, Bi 4f, and O 1s core levels of the brush coated BiAlO thin film at annealing temperature of 280 °C.



## 3. 결과 및 고찰

액정 셀을 제작하기 이전에 기판 위에 BiAlO 박막이 제 대로 형성되어 있는지를 확인하기 위해서 XPS 분석을 통 해 박막의 화학 구조를 분석하였다. 그림 2는 280℃ 온도 에서 소성된 브러쉬 코팅 BiAlO 박막의 Al 2p와 Bi 4f, O 1s 피크를 보여주고 있다. 먼저 Al 2p 스펙트럼을 확인해 보면 [그림 2(a)], 피크가 74.29 eV의 결합 에너지(binding energy)에 위치해 있음을 확인할 수 있다. 이것은 알루미 늄 원소가 박막에 고르게 분포되어 있으며 산화되어 있다 는 것을 의미한다 [14]. 그림 2(b)는 Bi 4f 스펙트럼을 보여 주고 있으며, 이것은 Bi 4f7/2와 Bi 4f5/2의 두 피크로 나 눌 수 있다. 각각의 피크는 159.32 eV와 164.63 eV의 결 합 에너지에 위치해 있으며, 이 결과 또한 박막에 고르게 분포된 비스무트 원소가 산화되어 있음을 의미한다 [15]. 마지막으로 O 1s 스펙트럼을 분석해 보면, 각각 530과 532 eV의 결합 에너지에 위치하는 세부 피크들로 나눌 수 있다 [그림 2(c)]. 각 결합 에너지는 순서대로 metal-oxide 결 합과 산소 공공(oxygen vacancy)를 의미하며, 이것을 통 해 표면에 산화막이 생성되어 있다는 것을 확인할 수 있다. 결과를 종합했을 때, XPS 화학 분석을 통해 브러쉬 공정을 이용해 ITO 기판 위에 BiAlO 박막이 제대로 형성되었음을 확인하였다.

POM 분석을 이용하여 브러쉬 공정을 통해 제작한 박막 을 이용한 셀의 액정 배향 특성을 그림 3과 같이 소성 온도 별로 확인하였다. 80℃의 소성온도에서는 POM 사진에서 불균일한 투과도와 함께 빛 샘 현상이 관측되었다 [그림 3(a)]. POM 분석에선 직교 배치된 'analyzer'와 'polarizer' 가 액정 셀의 위 아래에 부착되며(그림 3의 'A'와 'P'), 셀을 통과하는 빛이 제대로 차단되는지를 확인하여 액정 배향 상 태를 확인한다. 셀 내부의 액정이 한 방향으로 정렬되지

**Fig. 3.** POM images of the LC cells based on the brush coated BiAlO thin films at annealing temperature of (a)  $80^{\circ}$ C, (b)  $180^{\circ}$ C, and (c)  $280^{\circ}$ C ('A' and 'P' in image indicates 'analyzer' and 'polarizer', respectively).

않은 경우 셀 내부를 통과하는 빛이 제어되지 못해 차단이 제대로 되지 못하며, 그림과 같은 불균일한 투과도와 빛 샘 현상이 관측된다. 180℃의 소성 온도의 경우 80℃보다는 개선되었지만 [그림 3 (b)], 부분적으로 고르지 못한 투과 도가 관측되었다. 반면에 가장 높은 280℃의 소성 온도에 서는 전체적으로 균일한 투과도에 의한 검정 POM 사진이 관측되었다 [그림 3 (c)]. 이것은 이 소성 온도에서 셀 내부 의 액정 분자들이 한 방향으로 고르게 배향되었다는 것을 의미한다. 균일한 액정 배향에 의해 셀 내부에 들어온 빛이 일정하게 제어되고, 부착된 편광판들에 의해 빛이 완벽히 차단되어 그림과 같은 검정 POM 사진이 얻어지게 된다. 결과적으로 브러쉬 공정으로 제작된 BiAlO 박막이 80℃와 180℃의 온도에서 소성되었을 때는 불균일한 액정 배향이 구현되며, 280℃에서 소성된 박막 위에선 액정이 균일하 게 배향됨을 확인하였다.

액정의 배향 특성 분석에서 POM 분석과 더불어 중요하 게 사용되는 것은 프리틸트 각 측정이다. 프리틸트 각은 액 정 분자가 배향막과 이루고 있는 각도를 의미하며, 여기서 는 결정 회전법을 이용하여 측정하였다. 챔버 안에 배치된 액정 셀은 +70°에서 -70°까지 회전하게 되며, 이 과정에서 HeNe 레이저가 이 셀을 통과하게 된다. 이때 셀을 통과하 는 레이저의 투과도를 측정하며, 그것을 그래프로 표시한 다. 그리고 입력된 수치에 기반한 시뮬레이션 그래프(파란 색)와 측정 그래프(붉은색)를 비교하여 액정 셀이 가진 프 리틸트 각을 측정한다. 그 결과 두 그래프의 일치도가 높을



**Fig. 4.** Simulated pre-tilt angle of the LC cells based on the brush coated BiAlO thin films at annealing temperature of (a)  $80^{\circ}$ C, (b)  $180^{\circ}$ C, and (c)  $280^{\circ}$ C. (d) A comprehensive graph of measured pre-tilt angles as a function of annealing temperature.

수록 액정 셀이 균일하며 정확한 프리틸트 각을 가지고 있 다는 것을 의미한다. 그림 4는 이 분석을 이용한 소성 온도 별 프리틸트 각 측정 결과를 보여주고 있으며, 각각 80℃ 에선 평균 2.5899, 180℃에선 0.6143 그리고 280℃에선 0.1452의 프리틸트 각이 계산되었다. 또한 280℃의 그래 프에서 가장 높은 일치도를 보였다. 이것은 280℃의 소성 온도에서 가장 균일한 액정 배향이 구현됐다는 것을 의미 한다. 이러한 분석 결과를 통해 브러쉬 코팅된 BiAlO 박막 을 280℃의 온도에서 소성하는 것이 액정 소자에 가장 적 합하다는 것을 확인하였다.

이러한 균일한 액정 배향이 구현되는 메커니즘을 파악 하기 위해서 각 소성 온도별로 표면의 물리적 구조 분석을 실행하였다. 또한 브러쉬 공정이 박막 표면에 미치는 영향 을 확인하기 위해서 스핀 코팅된 박막과의 비교도 실시하 였다. 그림 5에 스핀 코팅된 BiAlO 박막과 브러쉬 코팅된 박막의 FE-SEM 분석 결과를 소성 온도별로 나타내었다. 스핀 코팅된 박막의 경우 80℃를 제외한 온도에선 표면에 서 눈에 띄는 특징이 확인되지 않았다. 이것은 박막이 파티 클 없는 평평한 표면을 가지고 있다는 것을 의미한다. 스핀 코팅은 기판 위에 분포된 BiAlO 용액을 고속으로 회전시 켜 박막을 형성시키며, 이 과정에서 발생되는 원심력으로 인하여 박막의 표면이 평평하게 된다. 그 결과 그림과 같은 분석 결과가 얻어진다. 80℃에서 소성된 스핀 코팅 박막의 경우 다른 온도보다 많은 파티클이 표면에서 관측되는데, 이것은 잔여 용제의 영향으로 판단된다. 용액 공정에서 사 용된 2-메톡시에탄올의 끓는점은 124℃이기 때문에, 80℃ 의 소성 온도에서는 이 용제가 완전히 증발하지 못한다. 이 러한 영향으로 불안정한 표면이 얻어지게 된다. 반면에 브 러쉬 코팅의 경우 스핀 코팅과는 달리 매우 거친 표면을 보 여주고 있다. 또한 표면에서 많은 파티클과 복합체가 형성 되어 있는 것을 확인할 수 있다. 이것은 스핀 코팅과 같은 원심력이 아닌 브러쉬 공정에 의해 박막이 형성되었기 때 문이며, 여기서도 80℃에선 잔여 용제의 영향으로 다른 소 성 온도보다 불안정한 표면이 제작되었다. 앞선 분석에서 가장 균일한 액정 배향이 구현된 280℃ 소성온도의 경우, 박막 표면의 파티클 집합체들이 브러쉬한 방향으로 형성 되어 있는 것을 확인할 수 있다. 브러쉬를 이용하여 용액을 기판 위에 코팅할 경우, 브러쉬의 솔 사이로 입자들이 모이 게 된다. 그리고 한쪽 방향으로 브러쉬 공정을 실시하게 되 면 입자들이 한쪽 방향으로 모이게 되며, 높은 온도의 소성 온도에선 막의 안정성이 증가하고 조밀한 박막이 형성된 다. 그 결과 그림과 같이 280℃ 소성온도 박막 표면에서 한쪽 방향으로 정렬된 패턴이 발생하게 된다. 액정이 한 방향으 로 균일하게 배향되기 위해서는 배향막의 물리적 이방성이



Fig. 5. FE-SEM images of the spin-coated and brush coated BiAlO film surface annealed at  $80^{\circ}$ C,  $180^{\circ}$ C, and  $280^{\circ}$ C.

필요하며, microgroove와 같이 한쪽 방향으로 물리적으 로 정렬된 구조를 통해서 이것을 구현할 수 있다 [16]. 스 핀 코팅된 박막의 경우 평평한 표면에 의해 물리적 이방성 이 발생하지 못하지만, 고온에서 소성된 브러쉬 코팅 박막 은 한 방향으로 생성된 파티클 구조 때문에 물리적 이방성 이 발생한다. 이러한 표면의 물리적인 특성으로 인해 POM 과 프리틸트 각 측정에서 확인한 것처럼 280℃ 온도에서 소성된 브러쉬 코팅 박막 위에서 균일한 액정 배향이 구현 되었다.

### 4. 결 론

본 논문에선 BiAlO 박막을 브러쉬 공정을 이용해서 기 판 위에 형성하고 그것을 액정의 배향막으로 이용하여 액 정 배향 특성을 확인하였다. 먼저 XPS를 통한 박막의 화학 분석을 통해 Al 2p와 Bi 4f의 스펙트럼을 확인하였으며, 브 러쉬 공정으로 박막이 기판 위에 제대로 형성되었음을 확 인하였다. 그리고 각각의 온도에서 소성된 브러쉬 코팅 BiAlO 박막을 액정 배향막으로 사용하여 배향 특성을 분 석하였다. 280℃의 소성 온도에서 제작된 박막을 사용했 을 때 POM에서 검은색 사진이 얻어졌으며 동시에 결정 회 전법을 통해 균일한 프리틸트 각이 발생함을 확인하였다. 이것을 통해 280℃의 소성 온도에서 가장 균일한 액정 배 향이 구현된다는 것을 판단하였으며, 액정 배향 메커니즘 을 분석하기 위해 FE-SEM으로 소성 온도별로 스핀 코팅 된 박막과 브러쉬 코팅된 박막의 표면을 분석하였다. 원심 력에 의해 평평한 표면을 생성하는 스핀 코팅과 달리 브러 쉬 코팅은 상대적으로 거친 표면을 생성하며, 브러쉬 공정 으로 인해 표면 위 입자들이 한쪽 방향으로 정렬됨을 확인 하였다. 또한 이 박막이 높은 온도에서 소성될수록 이 입자 의 정렬이 뚜렷해진다는 것도 확인하였다. 이것을 통해 표 면에 물리적 이방성이 발생하고, 액정 분자들이 한 방향으 로 배향된다는 것을 판단할 수 있었다. 결과적으로 고온에 서 소성된 브러쉬 코팅 BiAIO 박막이 액정 소자에 적합하 다는 것을 알 수 있었다.

#### ORCID

Dai Hyun Kim

https://orcid.org/0000-0002-5441-3834

#### REFERENCES

- J. C. Armas-Pérez, X. Li, J. A. Martínez-González, C. Smith, J. P. Hernández-Ortiz, P. F. Nealey, and J. J. de Pablo, *Langmuir*, 33, 12516 (2017). [DOI: https://doi.org/10.1021/acs.langmuir. 7b02522]
- [2] S. R. Thomas, P. Pattanasattayavong, and T. D. Anthopoulos, *Chem. Soc. Rev.*, **42**, 6910 (2013). [DOI: https://doi.org/10. 1039/C3CS35402D]
- [3] S. C. Lee, J. H. Lee, T. S. Oh, and Y. H. Kim, Sol. Energy Mater. Sol. Cells, 75, 481 (2003). [DOI: https://doi.org/10.1016/S0927-0248(02)00201-5]
- [4] J.Y.L. Ho, V. G. Chigrinov, and H. S. Kwok, *Appl. Phys. Lett.*, 90, 243506 (2007). [DOI: https://doi.org/10.1063/1.2748345]
- [5] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, *Nature*, **351**, 49 (1991). [DOI: https://doi.org/10.1038/351049a0]
- [6] C. H. Chiu, H. L. Kuo, P. C. Chen, C. H. Wen, Y. C. Liu, and H.M.P. Chen, *Appl. Phys. Lett.*, 88, 073509 (2006). [DOI: https://doi.org/10.1063/1.2173222]
- [7] J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, *Science*, **292**, 2299 (2001). [DOI: https://doi.org/ 10.1126/science.1059866]
- [8] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, *Thin Solid Films*, **403**, 485 (2002). [DOI: https://doi.org/10.1016/S0040-6090(01)01544-9]
- [9] R. Hong, J. Shao, H. He, and Z. Fan, Appl. Surf. Sci., 252, 2888

(2006). [DOI: https://doi.org/10.1016/j.apsusc.2005.04.041]

- [10] J. H. Lee, K. H. Ko, and B. O. Park, J. Cryst. Growth, 247, 119
  (2003). [DOI: https://doi.org/10.1016/S0022-0248(02)01907-3]
- [11] S. Schmidt, H. Motschmann, T. Hellweg, and R. von Klitzing, *Polymer*, **49**, 749 (2008). [DOI: https://doi.org/10.1016/j. polymer.2007.12.025]
- [12] L. Li, P. Gao, M. Baumgarten, K. Müllen, N. Lu, H. Fuchs, and L. Chi, *Adv. Mater.*, **25**, 3419 (2013). [DOI: https://doi.org/10. 1002/adma.201301138]
- [13] C. Guo, X. Gao, F. J. Lin, Q. Wang, L. Meng, R. Bian, Y. Sun,
  L. Jiang, and H. Liu, *ACS Appl. Mater. Interfaces*, 10, 39448
  (2018). [DOI: https://doi.org/10.1021/acsami.8b15746]
- [14] D. Li, L. Ruan, J. Sun, C. Wu, Z. Yan, J. Lin, and Q. Yan, *Nanotechnol. Rev.*, 9, 876 (2020). [DOI: https://doi.org/10. 1515/ntrev-2020-0062]
- [15] H. C. Jeong, E. M. Kim, G. S. Heo, J. H. Lee, J. H. Won, D. H. Kim, D. W. Lee, J. M. Han, T. W. Kim, and D. S. Seo, *ECS J. Solid State Sci. Technol.*, 9, 043001 (2020). [DOI: https://doi. org/10.1149/2162-8777/ab836a]
- [16] D. W. Berreman, *Phys. Rev. Lett.*, 28, 1683 (1972). [DOI: https://doi.org/10.1103/PhysRevLett.28.1683]