• Title/Summary/Keyword: Electron emission

Search Result 2,167, Processing Time 0.031 seconds

Measurement of Defect Energy Level in MgO Layer

  • Son, Chang-Gil;Song, K.B.;Jeoung, S.J.;Park, E.Y.;Kim, J.S.;Choi, E.H.;J, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1380-1383
    • /
    • 2007
  • The secondary electron emission coefficient (${\gamma}$) of the cathode is an important factor for improving the discharge characteristics of AC-PDP, because of its close relationship to discharge voltage. In this experiment, we have investigated the electronic structure of the energy band in the MgO layer responsible for the high ${\gamma}$. We used three kinds of MgO pellet that have another component, and each MgO layers have been deposited by electron beam evaporation method. The work-functions of MgO layer have been investigated from their ion-induced secondary electron emission coefficient (${\gamma}$), respectively, using various ions with different ionization energies in a ${\gamma}-FIB$ (Focused Ion Beam) system. We have compared work-function with ${\gamma}-FIB$ system current signal for measurement defect energy level in MgO layer. MgO-A in the three types has lowest work-function value (4.12eV) and there are two defect energy levels.

  • PDF

Influence of surface geometrical structures on the secondary electron emission coefficient $({\gamma})$ of MgO protective layer

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jeong, J.C.;Kim, S.B.;Cho, I.R.;Cho, J.W.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.806-809
    • /
    • 2003
  • Ion-induced secondary electron emission coefficient $({\gamma})$. of the patterned MgO thin film with geometrical structures has been measured by ${\gamma}$ - FIB(focused ion beam) system. The patterned MgO thin film with geometrical structures has been formed by the mask (mesh of ${\sim}$ $10{\mu}m^{2})$ under electron beam evaporation method. It is found that the higher ${\gamma}$. has been achieved by the patterned MgO thin film than the normal ones without patterning.

  • PDF

Study on Properties Change of a-C Thin Film by N2 Plasma Treatment (질소 플라즈마처리에 의한 a-C 박막의 전계방출특성 변화에 관한 연구)

  • Ryu, Jeong-Tak;Lee, K.Y.;Honda, S.;Katayama M.;Oura, K.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1332-1336
    • /
    • 2004
  • Amorphous carbon (a-C) films have been deposited on Si(100) substrate using RF magnetron system in order to investigate the electron field emission properties. The a-C films were treated by $N_2$ gas plasma at room temperature. Surface morphologices and structural properties of the a-C films before and after $N_2$ plasma treatment were observed by scanning electron microscopy and Raman spectroscope, respectively. Structural properties and surface morphology of the a-C films were changed by $N_2$ plasma treatment. The emission properties can be improved by the plasma treatment according to the contents of nitrogen on the a-C films which is varied by plasma treatment time. Before the plasma treatment, the a-C films are found to have a threshold field of 14 V/$\mu$m, but the a-C film treated by $N_2$ plasma for 30 min exhibit threshold field as low as 6.5 V/$\mu$m.

Effects of BCP Thickness on the Electrical and Optical Characteristics of Blue Phosphorescent Organic Light Emitting Diodes (BCP 두께가 청잭 인광 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Seo, Yu-Seok;Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.781-785
    • /
    • 2009
  • We have fabricated simple triple-layer blue-emitting phosphorescent organic light emitting diodes (OLEDs) using different thicknesses (25 and 55 nm) of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) electron transport layers. 1,1-bis[4-bis (4-methylphenyl)- aminophenyllcyclohexane (TAPC), bis[(4,6-di-fluorophenyl)-pyridinate-$N,C^{2'}$]picolinate (FIrpic) and N,N' -dicarbazolyl-3,5-benzene (mCP) were used as hole transport, blue guest and host materials, respectively. The driving voltage, electroluminescence (EL) efficiency and emission characteristics of devices were investigated. The maximum EL efficiency was 20 cd/A in the device with 55 nm BCP layer, which efficiency was about 33% higher than the device with 25 nm BCP layer. The higher efficiency in the 55 nm BCP device resulted from the enhanced electron-hole balance. In the EL spectrum of blue phosphorescent OLED with BCP layer, the relative intensity between 470 and 500 nm peaks was related to the location of emission zone.

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma (수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

PLS-II separator the vacuum electron gun beam current emission test (PLS-II 전자총 진공이원화와 빔 전류 인출시험)

  • Son, Yoon-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1580-1581
    • /
    • 2011
  • The linear accelerator of Pohang Accelerator Laboratory(PAL) will drive a top-up mode operation in PLS-II(Pohang Light Source-II). Due to this kind of the operation mode, the electron gun is expected to have shorter life time of the cathode. Further in the PLS-II, two gate valves will be installed in front of the electron gun. The distance between the pre-bunching section and the electron gun will increase by 400 mm compared to the existing system due to the insertion of these gate valves. As a result the incident electron beam. One of the goals to improve the beam pulse width is by incorporating suitable biased voltage. In this paper, we will present test results of beam pulse width as a function of different biased voltage and focusing solenoid coil.

  • PDF

Low Voltage Driving White OLED with New Electron Transport Layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Moon, Dae-Gyu
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.252-256
    • /
    • 2009
  • We have developed low driving voltage white organic light emitting diode with a new electron transport material, triphenylphosphine oxide ($Ph_{3}PO$). The white light emission was realized with a rubrene yellow dopant and blue-emitting DPVBi layer. The new electron transport layer results in a very high current density at low voltage, resulting in a reduction of driving voltage. The device with a new electron transport layer shows a brightness of $1150\;cd/m^2$ at a low driving voltage of 4.3 V.

Challenges in the development of the ultrafast electron microscope (초고속 전자 현미경의 개발과 극복 과제)

  • Park, Doo Jae
    • Vacuum Magazine
    • /
    • v.2 no.1
    • /
    • pp.17-20
    • /
    • 2015
  • In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

Electron Emission Mechanism in the Surface Conduction Electron Emitter Displays

  • Cho, Guang-Sup;Choi, Eun-Ha;Kim, Young-Guon;Kim, Dai-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.139-140
    • /
    • 2000
  • The origin of the display current in the surface conduction electron emitter displays has been verified in the calculation of the electron trajectory. Some electrons move directly toward the display surface as an anode current which is generated due to the inertial force of electron motion along the curved electric field lines with a small curvature near the fissure area..

  • PDF

Low voltage driving white OLED with new electron transport layer (New ETL 층에 의한 저전압 구동 백색 발광 OLED)

  • Kim, Tae-Yong;Suh, Won-Kyu;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.100-101
    • /
    • 2008
  • We have developed low voltage driving white organic light emitting diode with new electron transport layer. The with light emission was realized with a yellow dopant, rubrene and blue-emitting DPVBi layer. The new electron transport layer results in very high current density at low voltage, causing a reduction of driving voltage. The device with new electron transport layer shows a brightness of 1000 cd/m2 at 4.3 V.

  • PDF