DOI QR코드

DOI QR Code

Challenges in the development of the ultrafast electron microscope

초고속 전자 현미경의 개발과 극복 과제

  • 박두재 (한림대학교 전자물리학과)
  • Published : 2015.03.30

Abstract

In this article, a historical and scientific review on the development of an ultrafast electron microscope is supplied, and the challenges in further improvement of time resolution under sub-picosecond or even sub-femtosecond scale is reviewed. By combining conventional scanning electron microscope and femtosecond laser technique, an ultrafast electron microscope was invented. To overcome its temporal resolution limit which originates from chromatic aberration and Coulomb repulsion between individual electrons, a generation of electron pulse via strong-field photoemission has been investigated thoroughly. Recent studies reveal that the field enhancement and field accumulation associated with the near-field formation at sharply etched metal nanoprobe enabled such field emission by ordinary femtosecond laser irradiation. Moreover, a considerable acceleration reaching 20 eV with near-infrared laser and up to 300 eV acceleration with mid-infrared laser was observed, and the possibility to control the amount of acceleration by varying the incident laser pulse intensity and wavelength. Such findings are noteworthy because of the possibility of realizing a sub-femtosecond, few nanometer imaging of nanostructured sample.in silicon as thermoelectric materials.

Keywords

References

  1. J. K. Park, Y. H. Ahn, Ji-Yong Park, Soonil Lee and K. H. Park, Nanotechnology 21, 115706 (2010). https://doi.org/10.1088/0957-4484/21/11/115706
  2. J. Williamson, J. Cao, H. Ihee, H. Frey and A. Zewail, Nature 386, 159 (1997). https://doi.org/10.1038/386159a0
  3. E. Najafi, T. Scarborough, J. Tang and A. Zewail, Science 347, 164(2015). https://doi.org/10.1126/science.aaa0217
  4. B. Siwick, J. Dwyer, R. Jordan and R. Miller, Science 302, 1382 (2003). https://doi.org/10.1126/science.1090052
  5. P. Baum and A. Zewail, Proc. Nat. Aca. Sci. 103, 16105 (2006). https://doi.org/10.1073/pnas.0607451103
  6. P. B. Corkum, N. H. Burnett and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989). https://doi.org/10.1103/PhysRevLett.62.1259
  7. G. G. Paulus, F. Grasbon and H. Walther, Phys. Rev. A 64, 021401(R) (2001). https://doi.org/10.1103/PhysRevA.64.021401
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature 391, 667 (1997).
  9. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park and C. Lienau, Phys. Rev. Lett. 91, 143901 (2003). https://doi.org/10.1103/PhysRevLett.91.143901
  10. D. J. Park, S. B. Choi, K. J. Ahn and D. S. Kim, Phys. Rev. B 77, 115451 (2008). https://doi.org/10.1103/PhysRevB.77.115451
  11. C. Ropers, D. R. Solli, C. P. Schulz, C. Lienau and T. Elsaesser, Phys. Rev. Lett 98, 043907 (2007). https://doi.org/10.1103/PhysRevLett.98.043907
  12. M. Schenck and P. Hommelhoff, Phys. Rev. Lett. 105, 257601 (2010). https://doi.org/10.1103/PhysRevLett.105.257601
  13. P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993). https://doi.org/10.1103/PhysRevLett.71.1994
  14. K. J. Schafer, B. Yang, L. F. DiMauro and K. C. Kulander, Phys. Rev. Lett. 70, 1599 (1993). https://doi.org/10.1103/PhysRevLett.70.1599
  15. R. Bormann, M. Gulde, A. Weismann, S. V. Yalunin and C. Ropers, Phys. Rev. Lett. 105, 147601 (2010). https://doi.org/10.1103/PhysRevLett.105.147601
  16. G. Herink, D. R. Solli, M. Gulde and C. Ropers, Nature 483, 190 (2012). https://doi.org/10.1038/nature10878
  17. D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck and C. Lienau, Phys. Rev. Lett. 109, 244803 (2012). https://doi.org/10.1103/PhysRevLett.109.244803
  18. D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, P. GroB and C. Lienau, Ann. Phys. 525, 135 (2013). https://doi.org/10.1002/andp.201200216
  19. K. H. Kim, J. G. Kim, S. Nozawa, T. Sato, K. Y. Oang, T. W. Kim, H. Ki, J. Jo, S. Park, C. Song, T. Sato, K. Ogawa, T. Togashi, K. Tono, M. Yabashi, T. Ishikawa, J. Kim, R. Ryoo, J. Kim, H. Ihee and S. I. Adachi, Nature 518, 385 (2015). https://doi.org/10.1038/nature14163