• 제목/요약/키워드: Electron concentration (e/a)

검색결과 208건 처리시간 0.027초

Reduction of Hexavalent Chromium by Escherichia coli ATCC 33456 in Batch and Continuous Cultures

  • Bae, Woo-Chul;Kang, Tae-Gu;Kang, In-Kyong;Won, You-Jung;Jeong, Byeong-Chul
    • Journal of Microbiology
    • /
    • 제38권1호
    • /
    • pp.36-39
    • /
    • 2000
  • Toxic hexavalent chromium, Cr(VI), was reduced to a less toxic trivalent chromium form by E. coli ATCC 33456. The suitable electron donor for Cr(VI) reduction was glucose. E. coli ATCC 33456 was more resistant to metal cations than other reported Cr(VI) reducing microorganisms. Cell growth was inhibited by the presence of Cr(VI) in a liquid medium and Cr(VI) reduction accompanied cell growth. With a hydraulic retention time of 20 h, Cr(VI) reducing efficiency was 100% to 84% when Cr(VI) concentration in the influent was in the range of 10 to 40 mg L$\^$-1/. Specific rate of Cr(VI) reduction was 2.41 mg Cr(VI) g DCW$\^$-1/ h$\^$-1/ when 40 mg L$\^$-1/ of Cr(VI) influent was used. This result suggested the potential application of E. coli ATCC 33456 for the detoxification of Cr(VI) in Cr(VI) contaminated wastewater.

  • PDF

Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method (전착법으로 성장된 산화아연 나노막대의 특성에 전구체 농도 및 전착 전류가 미치는 효과)

  • Park, Youngbin;Nam, Giwoong;Park, Seonhee;Moon, Jiyun;Kim, Dongwan;Kang, Hae Ri;Kim, Haeun;Lee, Wookbin;Leem, Jae-Young
    • Journal of Surface Science and Engineering
    • /
    • 제47권4호
    • /
    • pp.198-203
    • /
    • 2014
  • ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권3호
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Chitosan Silver Nano Composites (CAgNCs) as Antibacterial Agent Against Fish Pathogenic Edwardsiella tarda (어류 병원성 균주 Edwardsiella tarda에 대한 키토산-실버 나노입자의 항박테리아 효과)

  • Dananjaya, S.H.S.;Godahewa, G.I.;Lee, Youngdeuk;Cho, Jongki;Lee, Jehee;De Zoysa, Mahanama
    • Journal of Veterinary Clinics
    • /
    • 제31권6호
    • /
    • pp.502-506
    • /
    • 2014
  • Recently nano particles have proven for wide array of bioactive properties. In the present study, antibacterial properties of chitosan silver nano composites (CAgNCs) were investigated against fish pathogenic Edwardsiella tarda. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of CAgNCs against E. tarda were $25{\mu}g/mL$ and $125{\mu}g/mL$, respectively. The field emission scanning electron microscope (FE-SEM) image of CAgNCs treated E. tarda showed the strongly damaged bacteria cells than non-treated bacteria. Furthermore, treatment of CAgNCs induced the level of intracellular reactive oxygen species (ROS) in E. tarda cells in concentration and time dependent manner suggesting that it may generate oxidative stress leading to bacterial cell death. In addition, MTT assay results showed that the lowest cell viability at $100{\mu}g/mL$ of CAgNCs treated E. tarda. Overall results of this study suggest that CAgNCs is a potential antibacterial agent to control pathogenic bacteria.

Synthesis of Dihydroxylated Chalcone Derivatives with Diverse Substitution Patterns and Their Radical Scavenging Ability toward DPPH Free Radicals

  • Kim, Beom-Tae;O, Kwang-Joong;Chun, Jae-Chul;Hwang, Ki-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권6호
    • /
    • pp.1125-1130
    • /
    • 2008
  • A series of dihydroxylated chalcone derivatives with diverse substitution patterns on a phenyl ring B and the para-substituents on a phenyl ring A were prepared, and their radical scavenging activities were evaluated by simple DPPH test to determine quantitative structure-activity relationship in these series of compounds. The chalcone compounds with the ortho- (i.e. 2',3'- and 3',4'-) and para- (i.e. 2,5'-) substitution patterns show an excellent antioxidant activities (80-90% of control at the concentration of 50 $\mu$M) which are comparable to those of ascorbic acid and $\alpha$ -tocopherol as positive reference materials. On the contrary, the compounds with meta- (i.e. 2',4'-, 3',5'-) substitution pattern demonstrate very dramatic decrease in activities which are around 25% of the control even at the concentration of 200 $\mu$ M (IC50 > 200 $\mu$ M). These dramatic differences could be interpreted in terms of the ease formation of fairly stable semiquinone radicals from the ortho- and parasubstituted chalcone molecules through facilitating electron delocalization. Our results indicate that the substitution patterns of two hydroxyl groups on ring B are very important structural factors for their radical scavenging activity enhancement. Meanwhile, the substituents at para-position of the phenyl ring A of chalcones have no influence on the activity.

Insights into the corrosion inhibition of steel rebar in chloride-contaminated synthetic concrete pore solutions by a new hydrazone (새로운 히드라존에 의한 염화물 오염 합성 콘크리트 공극 솔루션에서 철근의 부식 억제에 대한 통찰력)

  • Lgaz, Hassane;Lee, Han-seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.101-102
    • /
    • 2022
  • A new hydrazone derivatives namely (E)-N'-(4-(dimethylamino)benzylidene)-2-(5-methoxy-2-methyl-1H-indol-3-yl)acetohydrazide (HIND) has been confirmed for mitigating the corrosion of the steel rebar exposed to chloride contaminated synthetic concrete pore solution (ClSCPS). The mitigation of corrosion properties has been characterized by weight loss and electrochemical methods (Electrochemical impedance, Potentiodynamic polarization studies) as well as surface observations. The presence of HIND in the ClSCPS decreased the corrosion of steel rebar by adsorption of HIND molecules on the surface of the steel rebar. The optimal HIND concentration was 0.5 mmol/L, corresponding to an inhibition efficiency of 88.4%. The use of HIND enables the corrosion process to have a higher energy barrier. X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and X-ray diffraction (XRD) spectroscopy interpretations confirmed that HIND mitigates the corrosion attack on the surface steel rebar.

  • PDF

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E.;Adel, D.;Tharwat, C.;Attallah, O.;Rao, K.V.
    • Advances in nano research
    • /
    • 제3권2호
    • /
    • pp.111-121
    • /
    • 2015
  • $CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

Preparation and Properties of ZnO Thin Films by Metal-Organic Chemical Vapor Deposition Using Diethylzinc Source (Diethylzinc를 Source로 사용하는 화학증착법(MOCVD)에 의한 ZnO 박막의 제조 및 물성에 관한 연구)

  • 김경준;김광호
    • Journal of the Korean Ceramic Society
    • /
    • 제28권8호
    • /
    • pp.585-592
    • /
    • 1991
  • ZnO films were deposited onto Corning glass 7059 substrate in the temperature range from $200^{\circ}C$ to $450^{\circ}C$ by chemical vapor deposition technique using the hydrolysis of Diet ylzinc (DEZ). As the deposition temperature increased from $200^{\circ}C$ to $350^{\circ}C$, the deposition rate increased with the apparent activation energy of ∼23kJ/mole. Further increase of the deposition temperature above $400^{\circ}C$, however, resulted in a reduction of the rate. It was found that ZnO film grew with a strong C-axis preferred orientation at the temperature of $400^{\circ}C$. As the deposition temperature increased, the film resistivity decreased down to ∼0.2 $\Omega$cm at $450^{\circ}C$. The electrical resistivity was governed more likely by electron concentration rather than by electron mobility. Average optical transmission of the films in the optical wavelength range of 400 nm to 900 nm was over 90% and the optical energy band gap of 3.28∼3.32 eV was obtained from the direct transition.

  • PDF

Enhanced Antibacterial Activity of Sodium Hypochlorite under Acidic pH Condition (산성 pH 조건에서 차아염소산나트륨의 항균 활성 향상)

  • Son, Hyeon-Bin;Bae, Won-Bin;Jhee, Kwang-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • 제50권2호
    • /
    • pp.211-217
    • /
    • 2022
  • Sodium hypochlorite (NaClO) is a disinfectant widely used in hospitals and food industries because of its antimicrobial activity against not only bacteria but also fungi and virus. The antibacterial activity of NaClO lies in the maintenance of a stable hypochlorous acid (HClO) concentration, which is regulated by pH of the solution. HClO can easily penetrate bacterial cell membrane due to its chemical neutrality and the antibacterial activity of NaClO is thought to depend on the concentration of HClO in solution rather than hypochlorite ions (ClO-). In this study, we investigated the antibacterial activity of NaClO according to pH adjustment by means of time kill test and assays of Reactive Oxygen Species (ROS) and adenosine triphosphate (ATP) concentration changes before and after NaClO treatment. We also investigated that the degree of cell wall destruction through field emission scanning electron microscopy (FE-SEM). Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) exposed to 5 ppm NaClO at pH 5 exhibited 99.9% mortality. ROS production at pH 5 was 48% higher than that produced at pH 7. In addition, the ATP concentration in E. coli and S. aureus exposed to pH 5 decreased by 94% and 91%, respectively. As a result of FE-SEM, it was confirmed that the cell wall was destroyed in the bacteria by exposing to pH 5 NaClO. Taken together, our results indicate that the antibacterial activity of 5 ppm NaClO can be improved simply by adjusting the pH.