DOI QR코드

DOI QR Code

Effects of Precursor Concentration and Current on Properties of ZnO Nanorod Grown by Electrodeposition Method

전착법으로 성장된 산화아연 나노막대의 특성에 전구체 농도 및 전착 전류가 미치는 효과

  • Park, Youngbin (Department of Nano Engineering, Inje University) ;
  • Nam, Giwoong (Department of Nano Engineering, Inje University) ;
  • Park, Seonhee (Department of Nano Engineering, Inje University) ;
  • Moon, Jiyun (Department of Nano Engineering, Inje University) ;
  • Kim, Dongwan (Department of Nano Engineering, Inje University) ;
  • Kang, Hae Ri (Department of Nano Engineering, Inje University) ;
  • Kim, Haeun (Department of Nano Engineering, Inje University) ;
  • Lee, Wookbin (Department of Nano Engineering, Inje University) ;
  • Leem, Jae-Young (Department of Nano Engineering, Inje University)
  • Received : 2014.07.25
  • Accepted : 2014.08.22
  • Published : 2014.08.30

Abstract

ZnO nanorods have been deposited on ITO glass by electrodeposition method. The optimization of two process parameters (precursor concentration and current) has been studied in order to control the orientation, morphology, and optical property of the ZnO nanorods. The structural and optical properties of ZnO nanorods were systematically investigated by using field-emission scanning electron microscopy, X-ray diffractometer, and photoluminescence. Commonly, the results show that ZnO nanorods with a hexagonal form and wurtzite crystal structure have a c-axis orientation and higher intensity for the ZnO (002) diffraction peaks. Both high precursor concentration and high electrodeposition current cause the increase in nanorods diameter and coverage ratio. ZnO nanorods show a strong UV (3.28 eV) and a weak visible (1.9 ~ 2.4 eV) bands.

Keywords

References

  1. S. Kim, G. Nam, K. G. Yim, J. Lee, Y. Kim, J.-Y. Leem, Electron. Mater. Lett., 9 (2013) 293. https://doi.org/10.1007/s13391-013-2190-7
  2. S. Kim, H. Park, G. Nam, H. Yoon, B. Kim, I. Ji, Y. Kim, I. Kim, Y. Park, D. Kang, J.-Y. Leem, Electron. Mater. Lett., 10 (2014) 81. https://doi.org/10.1007/s13391-013-3130-2
  3. Z. L. Wang, X. Y. Kong, J. M. Zuo, Phys. Rev. Lett., 90 (2003) 185502. https://doi.org/10.1103/PhysRevLett.90.185502
  4. H. K. Lee, M. S. Kim, J. S. Kim, Nanotechnology, 22 (2011) 445602. https://doi.org/10.1088/0957-4484/22/44/445602
  5. Kenry, C. T. Lim, Prog. Mater Sci., 58 (2013) 705. https://doi.org/10.1016/j.pmatsci.2013.01.001
  6. X. Wang, C. J. Summers, Z. L. Wang, Nano Lett., 4 (2004) 423. https://doi.org/10.1021/nl035102c
  7. B. Pardhan, S. K. Batabyal, A. J. Pal, Sol. Energy Mater. Sol. Cells, 91 (2007) 769. https://doi.org/10.1016/j.solmat.2007.01.006
  8. R. Konenkamp, R. C. Word, C. Schlegel, Appl. Phys. Lett., 85 (2004) 6004. https://doi.org/10.1063/1.1836873
  9. H. Haga, F. Katahira, H. Watanabe, Thin Solid Films, 343 (1999) 145.
  10. J. H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth, 226 (2001) 493. https://doi.org/10.1016/S0022-0248(01)01388-4
  11. B. Xue, Y. Liang, L. Donglai, N. Eryong, S. Congli, f. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, S.Xiaosong, Appl. Surf. Sci., 257 (2011) 10317. https://doi.org/10.1016/j.apsusc.2011.05.132
  12. M. Lzaki, S. Watase, H. Takahashi, Appl. Phys. Lett., 83 (2003) 4930. https://doi.org/10.1063/1.1633677
  13. M. Tolosa, L. Damonte, H. Brine, H. Bolink, M. Fenollosa, Nanoscale Res. Lett., 8 (2013) 135. https://doi.org/10.1186/1556-276X-8-135
  14. Z. Gui, X. Wang, J. Liu, S. Yan, Y. Ding, Z. Wang, Y. Hu, J. Solid State Chem., 179 (2006) 1984. https://doi.org/10.1016/j.jssc.2006.03.035
  15. Y. Zhang, G. Du, B. Liu, H. Zhu, T. Yang, W. Li, D. Liu, S. Yang, J. Cryst. Growth, 262 (2004) 456. https://doi.org/10.1016/j.jcrysgro.2003.10.079
  16. S. Kim, M. S. Kim, G. Nam, J.-Y. Leem, Electron. Mater. Lett., 8 (2012) 445. https://doi.org/10.1007/s13391-012-2071-5
  17. A. Take, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, H. O. Everitt, Phys. Rev. B, 70 (2004) 195207. https://doi.org/10.1103/PhysRevB.70.195207
  18. S. Baek, S. Lim ; Thin Solid Films, 517 (2009) 4560. https://doi.org/10.1016/j.tsf.2008.12.044
  19. Z. Wang, X.-F. Qian, J. Yin, Z.-K. Zhu, J. Solid State Chem., 177 (2004) 2144. https://doi.org/10.1016/j.jssc.2003.10.026