• Title/Summary/Keyword: Electron Microscopy

Search Result 7,881, Processing Time 0.038 seconds

The Nobel Prize in Chemistry 2017: High-Resolution Cryo-Electron Microscopy

  • Chung, Jae-Hee;Kim, Ho Min
    • Applied Microscopy
    • /
    • v.47 no.4
    • /
    • pp.218-222
    • /
    • 2017
  • The 2017 Nobel Prize in Chemistry was awarded to the following three pioneers: Dr. Joachim Frank, Dr. Jacques Dubochet, and Dr. Richard Henderson. They all contributed to the development of a Cryo-electron microscopy (EM) technique for determining the high-resolution structures of biomolecules in solution, particularly without crystal and with much less amount of biomolecules than X-ray crystallography. In this brief commentary, we address the major advances made by these three Nobel laureates as well as the current status and future prospects of this Cryo-EM technique.

Ultrastructural observation of Pneumocystis Carinii in the human lung tissue (폐조직내 Pneumocystis carinii의 전자현미경적 관찰)

  • Kwon, T.J.;Seo, Y.H.;Kim, C.S.
    • Applied Microscopy
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 1982
  • P. carinii is a protozoan which induces an often fatal pneumonitis in a variety of compromised patients. The ultrastructure of P. carinii was studied in a male infant with pneumocystitis pneumonia associated with hypogammaglobulinemia. Four principal structural varieties-small trophozoites, large trophozoites, mature cyst and empty cyst were identified. The ultrastructure of these organisms was similar to the cases previously reported. Relevance of the morphologic findings to the functional aspect were discussed.

  • PDF

Transmission Electron Microscopy Specimen Preparation for Layer-area Graphene by a Direct Transfer Method

  • Cho, Youngji;Yang, Jun-Mo;Lam, Do Van;Lee, Seung-Mo;Kim, Jae-Hyun;Han, Kwan-Young;Chang, Jiho
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.133-137
    • /
    • 2014
  • We suggest a facile transmission electron microscopy (TEM) specimen preparation method for the direct (polymer-free) transfer of layer-area graphene from Cu substrates to a TEM grid. The standard (polymer-based) method and direct transfer method were by TEM, high-resolution TEM, and energy dispersive X-ray spectroscopy (EDS). The folds and crystalline particles were formed in a graphene specimen by the standard method, while the graphene specimen by the direct method with a new etchant solution exhibited clean and full coverage of the graphene surface, which reduced several wet chemical steps and accompanying mechanical stresses and avoided formation of the oxide metal.

Water Wetting Observation on a Superhydrophobic Hairy Plant Leaf Using Environmental Scanning Electron Microscopy

  • Yoon, Sun Mi;Ko, Tae-Jun;Oh, Kyu Hwan;Nahm, Sahn;Moon, Myoung-Woon
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.201-205
    • /
    • 2016
  • Functional surfaces in nature have been continuously observed because of their ability to adapt to the environment. To this end, methods such as scanning electron microscopy (SEM) have been widely used, and their wetting functions have been characterized via environmental SEM. We investigated the superhydrophobic hairy leaves of Pelargonium tomentosum, i.e., peppermint-scented geranium. Their surface features and wettability were studied at multiple-scales, i.e., macro-, micro-, and sub-micro scales. The surfaces of the investigated leaves showed superhydrophobicity at the macro-, and micro-scales. The wetting or condensing behavior was studied for molecule-size water vapors, which easily adhered to the hairy surface owing to their significantly lower size in comparison to that of the surface.

Some living eukaryotes during and after scanning electron microscopy

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.16.1-16.7
    • /
    • 2021
  • Electron microscopy (EM) is an essential imaging method in biological sciences. Since biological specimens are exposed to radiation and vacuum conditions during EM observations, they die due to chemical bond breakage and desiccation. However, some organisms belonging to the taxa of bacteria, fungi, plants, and animals (including beetles, ticks, and tardigrades) have been reported to survive hostile scanning EM (SEM) conditions since the onset of EM. The surviving organisms were observed (i) without chemical fixation, (ii) after mounting to a precooled cold stage, (iii) using cryo-SEM, or (iv) after coating with a thin polymer layer, respectively. Combined use of these techniques may provide a better condition for preservation and live imaging of multicellular organisms for a long time beyond live-cell EM.

Double staining method for array tomography using scanning electron microscopy

  • Eunjin Kim;Jiyoung Lee;Seulgi Noh;Ohkyung Kwon;Ji Young Mun
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.14.1-14.6
    • /
    • 2020
  • Scanning electron microscopy (SEM) plays a central role in analyzing structures by imaging a large area of brain tissue at nanometer scales. A vast amount of data in the large area are required to study structural changes of cellular organelles in a specific cell, such as neurons, astrocytes, oligodendrocytes, and microglia among brain tissue, at sufficient resolution. Array tomography is a useful method for large-area imaging, and the osmium-thiocarbohydrazide-osmium (OTO) and ferrocyanide-reduced osmium methods are commonly used to enhance membrane contrast. Because many samples prepared using the conventional technique without en bloc staining are considered inadequate for array tomography, we suggested an alternative technique using post-staining conventional samples and compared the advantages.

DigitalMicrograph Script Source Listing for a Geometric Phase Analysis

  • Kim, Kyou-Hyun
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.101-105
    • /
    • 2015
  • Numerous digital image analysis techniques have been developed with regard to transmission electron microscopy (TEM) with the help of programming. DigitalMicrograph (DM, Gatan Inc., USA), which is installed on most TEMs as operational software, includes a script language to develop customized software for image analysis. Based on the DM script language, this work provides a script source listing for quantitative strain measurements based on a geometric phase analysis.

Sublimable materials facilitate the TEM sample preparation of oil-soluble nanomaterials

  • Yu-Hao Deng
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.21.1-21.3
    • /
    • 2020
  • Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.

Methanol fixation for scanning electron microscopy of plants

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.10.1-10.6
    • /
    • 2020
  • Plant specimens for scanning electron microscopy (SEM) are commonly treated using standard protocols. Conventional fixatives consist of toxic chemicals such as glutaraldehyde, paraformaldehyde, and osmium tetroxide. In 1996, methanol fixation was reported as a rapid alternative to the standard protocols. If specimens are immersed in methanol for 30 s or longer and critical-point dried, they appear to be comparable in preservation quality to those treated with the chemical fixatives. A modified version that consists of methanol fixation and ethanol dehydration was effective at preserving the tissue morphology and dimensions. These solvent-based fixation and dehydration protocols are regarded as rapid and simple alternatives to standard protocols for SEM of plants.

Electron Microscopic Study of Protoplast Formation from the Conidiospore of Trichoderma koningii (Trichoderma koningii의 conidiospore로부터의 원형질체 생성에 관한 전자현미경적 연구)

  • Park, H.M.;Lim, H.M.;Hong, S.W.;Hah, Y.C.
    • Applied Microscopy
    • /
    • v.14 no.2
    • /
    • pp.38-51
    • /
    • 1984
  • Fine structure of dormant and swollen conidiospore from Trichoderma koningii and the mechanism of protoplasting from the conidiospore were studied by scanning and transmission electron microscopy. The cell wall of dormant conidiospore was two-layered structure which consisted of electron dense outer layer and electron transparent inner layer. After 8.5 hrs incubation. the conidiospore was swollen and the outer layer of cell wall shown unequal thickness and partial breakage. Protoplast was released through the pore which has been formed by the breakage of outer layer and dissolution of newly synthesized cell wall for germ-tube formation. Swollen conidiospore and protoplast in releasing process contained various cell organelles and vacuoles with electron dense materials. The protoplast contained looser cytoplasm and had no cell wall materials outside of plasmamembrane.

  • PDF