DOI QR코드

DOI QR Code

Sublimable materials facilitate the TEM sample preparation of oil-soluble nanomaterials

  • Yu-Hao Deng (Academy for Advanced Interdisciplinary Studies, Peking University)
  • Received : 2020.09.04
  • Accepted : 2020.09.21
  • Published : 2020.12.31

Abstract

Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.

Keywords

References

  1. Ayache J, Beaunier L, Boumendil J, et al. Sample preparation handbook for transmission electron microscopy: techniques[M]. Springer Science & Business Media, (2010). https://www.springer.com/gp/book/9780387981819.
  2. H.W. Cha, M.C. Kang, K. Shin, et al., Transmission electron microscopy specimen preparation of delicate materials using Tripod polisher. Appl. Microsc. 46(2), 110-115 (2016). https://doi.org/10.9729/AM.2016.46.2.110
  3. M. Duchamp, Q. Xu, R.E. Dunin-Borkowski, Convenient preparation of high-quality specimens for annealing experiments in the transmission electron microscope. Microsc. Microanal. 20(6), 1638-1645 (2014). https://doi.org/10.1017/S1431927614013476
  4. G.J. Kearns, E.W. Foster, J.E. Hutchison, Substrates for direct imaging of chemically functionalized SiO2 surfaces by transmission electron microscopy. Anal. Chem. 78(1), 298-303 (2006). https://doi.org/10.1021/ac051459k
  5. M.T. Kennedy, B.A. Korgel, H.G. Monbouquette, et al., Cryo-transmission electron microscopy confirms controlled synthesis of cadmium sulfide nanocrystals within lecithin vesicles. Chem. Mater. 10(8), 2116-2119 (1998). https://doi.org/10.1021/cm970744k
  6. N.Y. Kim, G.H. Ryu, H.J. Park, et al., An improved specimen preparation of porous powder materials for transmission electron microscopy. Microsc. Microanal. 20(S3), 366-367 (2014). https://doi.org/10.1017/S1431927614003559
  7. I. Moreels, Y. Justo, B. De Geyter, et al., Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 5(3), 2004-2012 (2011). https://doi.org/10.1021/nn103050w
  8. R.R. Nair, P. Blake, J.R. Blake, et al., Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 97(15), 153102 (2010). https://doi.org/10.1063/1.3492845
  9. C.H. Park, H.W. Kim, I.J. Rhyu, et al., How to get well-preserved samples for transmission electron microscopy. Appl. Microsc. 46(4), 188-192 (2016). https://doi.org/10.9729/AM.2016.46.4.188
  10. W. Regan, N. Alem, B. Aleman, et al., A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010). https://doi.org/10.1063/1.3337091
  11. K.L. Stinson-Bagby, R. Roberts, E.J. Foster, Effective cellulose nanocrystal imaging using transmission electron microscopy. Carbohydr. Polym. 186, 429-438 (2018). https://doi.org/10.1016/j.carbpol.2018.01.054
  12. J.H. Warner, M.H. Rummeli, A. Bachmatiuk, et al., Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy. ACS Nano 4(1), 470-476 (2010). https://doi.org/10.1021/nn901371k