• Title/Summary/Keyword: Electroless Reduction

Search Result 33, Processing Time 0.019 seconds

Electroless Nickel Plating (무전해 니켈도금에 대하여(I))

  • 지태촌;여운관
    • Journal of Surface Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Electroless plating is the continious formation of metallic coatings from metal ions by che-mical reduction without the use of electrical current. This is, however, more expansive than the conventional electroplating but is often used because of certain adventage. Here, general description of past research on electroless nickel plating, especially about the merits of each research was given. Part(Ⅰ) is for the conposition of solution, pretreatment and facilities of electroless nickel plating.

  • PDF

Review on Electroless Plating(I) (무전해도금(I))

  • Kim, Man;Kwon, Sik-Chol
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.3
    • /
    • pp.121-127
    • /
    • 1986
  • There are many plating methods already commercially employed in te surface technology. One of the plating methods is electroless (chemical) plating, which is deposited by auto-catalytic reduction of metallic ion with the reducing agent in the plating bath. And it has many advantages comparing with electrolytic plating in respect of properties of deposit, such as corrosion resistance, wear resistance, uniformity, hardness, adhesion and so on. So, electroless plating is the fatest growing process in metallization of plastic and electronic industry. The properties and numerous applications of electroless deposits are attracting more and more attention from finish specifies. Many metal finishers are considering set-up of new electroless line in their shops. This review will be beneficial to domestic metal finishers to understand the real status of present electroless plating technology. It will also provide some knowledge on the economic aspect of electroless plating for the commercial application of specific parts.

  • PDF

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong;Oh, Joo Young;Song, Shin Ae;Kim, Kiyoung;Lim, Sung Nam
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.215-221
    • /
    • 2017
  • The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide(AAO) Membrane

  • Kim, Yong-Hyun;Han, Young-Hwan;Lee, Hyung-Jik;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.191-195
    • /
    • 2008
  • Highly ordered silver nanowire with a diameter of 10 nm was arrayed by electroless deposition in a porous anodic aluminum oxide(AAO) membrane. The AAO membrane was fabricated electrochemically in an oxalic acid solution via a two-step anodization process, while growth of the silver nanowire was initiated by using electroless deposition at the long-range-ordered nanochannels of the AAO membrane followed by thermal reduction of a silver nitrate aqueous solution by increasing the temperature up to $350^{\circ}C$ for an hour. An additional electro-chemical procedure was applied after the two-step anodization to control the pore size and channel density of AAO, which enabled us to fabricate highly-ordered silver nanowire on a large scale. Electroless deposition of silver nitrate aqueous solution into the AAO membrane and thermal reduction of silver nanowires was performed by increasing the temperature up to $350^{\circ}C$ for 1 h. The morphologies of silver nanowires arrayed in the AAO membrane were investigated using SEM. The chemical composition and crystalline structure were confirmed by XRD and EDX. The electroless-deposited silver nanowires in AAO revealed a well-crystallized self-ordered array with a width of 10 nm.

Fabrication of Metal-Semiconductor Interface in Porous Silicon and Its Photoelectrochemical Hydrogen Production

  • Oh, Il-Whan;Kye, Joo-Hong;Hwang, Seong-Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4392-4396
    • /
    • 2011
  • Porous silicon with a complex network of nanopores is utilized for photoelectrochemical energy conversion. A novel electroless Pt deposition onto porous silicon is investigated in the context of photoelectrochemical hydrogen generation. The electroless Pt deposition is shown to improve the characteristics of the PS photoelectrode toward photoelectrochemical $H^+$ reduction, though excessive Pt deposition leads to decrease of photocurrent. Furthermore, it is found that a thin layer (< 10 ${\mu}m$) of porous silicon can serve as anti-reflection layer for the underlying Si substrate, improving photocurrent by reducing photon reflection at the Si/liquid interface. However, as the thickness of the porous silicon increases, the surface recombination on the dramatically increased interface area of the porous silicon begins to dominate, diminishing the photocurrent.

A Study on Formation of Ni-Tl-P deposits by Electroless Plating (무전해도금에 의한 Ni-Tl-P 피막형성에 관한 연구)

  • 류일광;추현식
    • Journal of Surface Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.126-134
    • /
    • 2000
  • This study investigated the bath compositions and plating conditions and crystal structure used for achieving nickel-thallium-phosphorus deposits by means electroless plating. The electroless nickel-thallium-phosphorus deposits were achieved with a bath using sodium hypophosphite as the reducing agent and sodium citrate as the complexing agent. The depositing rate was 10.5mg.$cm^{2-1}$ .$hr^{-1 }$ from the optimistic bath composition, 0.1M nickel sulfate, 0.005M thallium sulfate, 0.2M sodium hypophosphite, and 0.05M sodium citrat and the recommended plating conditions, pH 5.5 and $90^{\circ}C$. The composition of alloy deposits determined by X-ray analysis (EDS) that the Thallium was increased with major increasing concentration of complexing agent and thallium ion in bath solution, it decreased according to the increasing concentrations of reduction agent in the bath solution, Bit Phosphorus showed a contrary to the thallium. It was observed from X-ray diffraction analysis, Scanning Electron Microscopy and Transmission Electron Microscopy. The crystalline structure of deposits was amorphous at the first deposited state but it was changed $Ni-T1-Ni_{5}$ $P_2$ polycrystalline when subjected to 1 hour heat treatment of more than $350^{\circ}C$. TEM observation demonstrated that the microstructure was identical to the result of the XRD at as deposited but it became $Ni-Tl-Ni_{5}$ $P_2$ polycrystalline when heated. And grain size was 10-50nm.

  • PDF

Preparation of Cu-Ag Powder having Core-Shell Structure by Electroless Plating Method (무전해 도금법을 이용한 코어 셸 구조의 Cu-Ag분말 제조)

  • Kim, Jong-Wan;Lee, Huk-Hee;Won, Chang-Whan
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Cu-Ag powder having Core-Shell structure was prepared from by electroless plating method using agents such as $AgNO_3$, $NH_{4}OH$, Hydroquinone. Ag coated copper powders were analyzed using scanning electron microscopy(SEM) and energy dispersive X-ray spectrometer(EDX). The silver coating layer of copper powder was affected from various reaction conditions such as molar ratio of $NH_{4}OH$, $AgNO_3$, and pulp density. Free silver was generated below 0.1M or 0.3M and above of $NH_{4}OH$ mole ratio. Silver coating layer thickened as addition of $AgNO_3$. When the pulp density reached 12% with 0.2M $NH_{4}OH$, and 0.15M $AgNO_3$ at $4^{\circ}C$, silver was homogeneously distributed around the copper particles and free silver particles were not generated.

A Study on Formation of Conductive Pattern on Polymer Using LDS (LDS를 이용한 폴리머상의 전도성 패턴 형성 연구)

  • Paik, Byoung-Man;Lee, Jae-Hoon;Shin, Dong-Sig;Lee, Kun-Sang
    • Laser Solutions
    • /
    • v.12 no.4
    • /
    • pp.6-11
    • /
    • 2009
  • The LDS(Laser Direct Structuring) process uses thermoplastic polymers with a additive compound that serves as plating seed after the activation by laser. It can realize industry requirement such as miniaturization of electrical component, design flexibility and reduction of production steps. The purpose of this study is to introduce LDS, and to investigate the fundamental mechanism. Also the characteristics of conductive patterns were investigated with respect to laser fluence and intensity. We have used a pulsed fiber laser (wavelength : 1064nm) and copper electroless plating to fabricate conductive patterns. The result showed that laser induced metal-organic complex was caused metalization by electroless copper plating, the critical laser fluence was $1.41\;J/cm^2$ at a scan speed of 1 m/s.

  • PDF

Etchless Fabrication of Cu Circuits Using Wettability Modification and Electroless Plating (젖음성 차이와 무전해도금을 이용한 연성 구리 회로패턴 형성)

  • Park, Sang-Jin;Ko, Tae-Jun;Yoon, Juil;Moon, Myoung-Woon;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.622-629
    • /
    • 2015
  • Cu circuits were successfully fabricated on flexible PET(polyethylene terephthalate) substrates using wettability difference and electroless plating without an etching process. The wettability of Cu plating solution on PET was controlled by oxygen plasma treatment and $SiO_x$-DLC(silicon oxide containing diamond like carbon) coating by HMDSO(hexamethyldisiloxane) plasma. With an increase of the height of the nanostructures on the PET surface with the oxygen plasma treatment time, the wettability difference between the hydrophilicity and hydrophobicity increased, which allowed the etchless formation of a Cu pattern with high peel strength by selective Cu plating. When the height of the nanostructure was more than 1400 nm (60 min oxygen plasma treatment), the reduction of the critical impalement pressure with the decreasing density of the nanostructure caused the precipitation of copper in the hydrophobic region.

Fabrication Process and Characterization of Sonic Polymer-Metal Composite Actuators by Electroless Plating of Platinum (백금의 무 전해 도금에 의한 이온성 고분자-금속 복합물 액추에이터의 제작 공정 및 특성 측정)

  • Cha, Seung-Eun;Park, Jeong-Ho;Lee, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.455-463
    • /
    • 2002
  • Ionic Polymer metal composite(IPMC), one of new actuation materials of EAPs is fabricated by electroless plating of platinum on both sides of the perfluorosulfonic acid film or Nafion film and its electromechanical characteristics are investigated. The IPMC strip bends towards anode under electrical field. As the number of plating cycle increases, the distance between plated platinum electrodes on both sides of Nafion membrane decreases and also the displacement is almost inversely proportional to the number of plating. The displacement of IPMC strip depends on voltage magnitude and applied signal frequency and its maximum deformation is observed at a critical frequency, resonant frequency. Low pressure sandblasting is used for surface treatment of Nafion membrane and at 8 times of plating cycle produced actuator with high displacement performance. For more efficiency of fabricated IPMC, it is useful to add one or two surface developing step which is the second reduction process using hydrazine.