DOI QR코드

DOI QR Code

Novel Environmentally Benign and Low-Cost Pd-free Electroless Plating Method Using Ag Nanosol as an Activator

  • Kim, Jun Hong (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Oh, Joo Young (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Song, Shin Ae (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Kim, Kiyoung (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology) ;
  • Lim, Sung Nam (Micro/Nano Scale Manufacturing Group, Korea Institute of Industrial Technology)
  • Received : 2017.04.14
  • Accepted : 2017.06.26
  • Published : 2017.09.30

Abstract

The electroless plating process largely consists of substrate cleaning, seed formation (activator formation), and electroless plating. The most widely used activator in the seed formation step is Pd, and Sn ions are used to facilitate the formation of this Pd seed layer. This is problematic because the Sn ions interfere with the reduction of Cu ions during electroless plating; thus, the Sn ions must be removed by a hydrochloric acid cleaning process. This method is also expensive due to the use of Pd. In this study, Cu electroless plating was performed by forming a seed layer using a silver nanosol instead of Pd and Sn. The effects of the Ag nanosol concentration in the pretreatment solution and the pretreatment time on the thickness and surface morphology of the Cu layer were investigated. The degrees of adhesion to the substrate were similar for the electroless-plated Cu layers formed by conventional Pd activation and those formed by the Ag nanosol.

Keywords

References

  1. D. P. Long, J. M. Blackburn and J. J. Watkins, Adv. Mater., 2000, 12(12), 913-915. https://doi.org/10.1002/1521-4095(200006)12:12<913::AID-ADMA913>3.0.CO;2-#
  2. K. D. Bruyn, M. V. Stappen, H. D. Deurwaerder, L. Rouxhet and J. P. Celis, Surf. Coat. Technol., 2003, 163, 710-715.
  3. A. Warshawsky, D. A. Upson, W. T. Ferrar and J. R. Monnier, J. Polym. Sci. A. Polym. Chem., 1989, 27(9), 3015-3041. https://doi.org/10.1002/pola.1989.080270913
  4. T. Karasawa and Y. Miyata, Thin Solid Films, 1993, 223(1), 135-139. https://doi.org/10.1016/0040-6090(93)90737-A
  5. S. W. Jan and S. C. Lee, J. Electrochem. Soc., 1987, 134(8), 2056-2061. https://doi.org/10.1149/1.2100819
  6. S. H. Y. Lo, Y. Y. Wang and C. C. Wan, J. Colloid. Interface. Sci., 2007, 310(1), 190-195. https://doi.org/10.1016/j.jcis.2007.01.057
  7. K. W. Oh, D. J. Kim and S. H. Kim, J. Appl. Polym. Sci., 2002, 84(7), 1369-1379. https://doi.org/10.1002/app.10272
  8. R. S. Almeida, C. A. Damato, E. C. Botelho, L. C. Pardini and M. C. Rezende, J. Mater. Sci., 2008, 43(9), 3173-3179. https://doi.org/10.1007/s10853-008-2528-y
  9. E. V. Shinkareva and A. M. Safonova, Glass and Ceramics, 2007, 64(9), 316-317. https://doi.org/10.1007/s10717-007-0080-x
  10. Q. F. Wei, D. F. Shao, B. Y. Deng and Q. X. Xu, J. Coat. Technol. Res., 2010, 7(1), 99-103. https://doi.org/10.1007/s11998-009-9164-6
  11. I. I. Beilis and R. L. Boxman, Surf. Coat. Technol., 2009, 204(6), 865-871. https://doi.org/10.1016/j.surfcoat.2009.09.003
  12. V. Tsakova, J. Solid. State. Electrochem., 2008, 12(11), 1421-1434. https://doi.org/10.1007/s10008-007-0494-y
  13. Y. X. Lu, L. L. Xue and F. Li, Appl. Surf. Sci., 2011, 257, 3135-3139. https://doi.org/10.1016/j.apsusc.2010.10.129
  14. S. M. Kim and W. S. Song, Text. Sci. Eng., 2008, 45, 97-103.
  15. R. H. Guo, S. Q. Jiang, C. W. M. Yuen, M. C. F. Ng and G. H. Zheng, J. Coat. Technol. Res., 2012, 9(2), 171-176. https://doi.org/10.1007/s11998-009-9227-8
  16. P. Dechasit and W. Trakarnpruk, J. Met. Mater. Min., 2011, 21(2), 19-27.
  17. A. Garcia, T. Berthelot, P. Viel, A. Mesnage, P. Jegou, F. Nekelson, S. Roussel and S. Palacin, ACS. Appl. Mater. Interfaces., 2010, 2(4), 1177-1183. https://doi.org/10.1021/am1000163
  18. Y. X. Lu, Appl. Surf. Sci., 2010, 256(11), 3554-3558. https://doi.org/10.1016/j.apsusc.2009.12.153
  19. A. Kaewvilai, R. Tanathakorn, A. Laobuthee, W. Rattanasakulthong and A. Rodchanarowan, Surf. Coat. Tech., 2017, 319, 260-266. https://doi.org/10.1016/j.surfcoat.2017.04.018
  20. S.J. Park, T.-J. Ko, J. Yoon, M.W. Moon, K.H. Oh and J.H. Han, Appl. Surf. Sci., 2017, 396, 1678-1684. https://doi.org/10.1016/j.apsusc.2016.12.007
  21. L. Hou, H. Zhao and Y. Lu, J. Mater. Sci: Mater. Electron., 2017, 28, 4219-4228. https://doi.org/10.1007/s10854-016-6044-6
  22. J.E. Graves, M. Sugden, R.E. Litchfield, D.A. Hutt, T. J. Mason, A.J. Cobley, Ultrasonics Sonochemistry, 2016, 29, 428-438. https://doi.org/10.1016/j.ultsonch.2015.10.016
  23. K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan and S. Stappert, Phys. Rev. Lett., 2003, 91(10), 1061021-1061024.
  24. T. Zhai, C. Ding, L. Lu, C. Zhang and D. Yang, Mater. Lett., 2015, 147, 46-49. https://doi.org/10.1016/j.matlet.2015.02.018