DOI QR코드

DOI QR Code

Fabrication of Metal-Semiconductor Interface in Porous Silicon and Its Photoelectrochemical Hydrogen Production

  • Received : 2011.10.12
  • Accepted : 2011.10.26
  • Published : 2011.12.20

Abstract

Porous silicon with a complex network of nanopores is utilized for photoelectrochemical energy conversion. A novel electroless Pt deposition onto porous silicon is investigated in the context of photoelectrochemical hydrogen generation. The electroless Pt deposition is shown to improve the characteristics of the PS photoelectrode toward photoelectrochemical $H^+$ reduction, though excessive Pt deposition leads to decrease of photocurrent. Furthermore, it is found that a thin layer (< 10 ${\mu}m$) of porous silicon can serve as anti-reflection layer for the underlying Si substrate, improving photocurrent by reducing photon reflection at the Si/liquid interface. However, as the thickness of the porous silicon increases, the surface recombination on the dramatically increased interface area of the porous silicon begins to dominate, diminishing the photocurrent.

Keywords

References

  1. Luque, A.; Hegedus, S., Eds. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons: West Sussex, 2003.
  2. Sailor, M. J. ACS Nano 2007, 1, 248-252. https://doi.org/10.1021/nn700340u
  3. Zhang, X. Journal of The Electrochemical Society 2004, 151, C69. https://doi.org/10.1149/1.1632477
  4. Smith, R. L.; Collins, S. D. Journal of Applied Physics 1992, 71, R1-R22. https://doi.org/10.1063/1.350839
  5. Canham, L. T. Appl. Phys. Lett. 1990, 57, 1046-1048. https://doi.org/10.1063/1.103561
  6. Jeske, M.; Schultze, J. W.; Thonissen, M.; Munder, H. Thin Solid Films 1995, 255, 63-66. https://doi.org/10.1016/0040-6090(94)05605-D
  7. Lin, H.; Gao, T.; Fantini, J.; Sailor, M. J. Langmuir 2004, 20, 5104-5108. https://doi.org/10.1021/la049741u
  8. Lin, H.; Mock, J.; Smith, D.; Gao, T.; Sailor, M. J. Journal of Physical Chemistry B 2004, 108, 11654-11659. https://doi.org/10.1021/jp049008b
  9. Bookbinder, D. C.; Lewis, N. S.; Bradley, M. G.; Bocarsly, A. B.; Wrighton, M. S. Journal of the American Chemical Society 1979, 101, 7721-7723. https://doi.org/10.1021/ja00520a019
  10. Bocarsly, A. B.; Bookbinder, D. C.; Dominey, R. N.; Lewis, N. S.; Wrighton, M. S. Journal of the American Chemical Society 1980, 102, 3683-3688. https://doi.org/10.1021/ja00531a003
  11. Bookbinder, D. C.; Bruce, J. A.; Dominey, R. N.; Lewis, N. S.; Wrighton, M. S. Proceedings of the National Academy of Sciences 1980, 77, 6280-6284. https://doi.org/10.1073/pnas.77.11.6280
  12. Nakato, Y.; Egi, Y.; Hiramoto, M.; Tsubomura, H. Journal of Physical Chemistry 1984, 88, 4218-4222. https://doi.org/10.1021/j150663a006
  13. Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S. Science 2010, 327, 185-187. https://doi.org/10.1126/science.1180783
  14. Koshida, N.; Nagasu, M.; Sakusabe, T.; Kiuchi, Y. Journal of the Electrochemical Society 1985, 132, 346-349. https://doi.org/10.1149/1.2113835
  15. Herino, R. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 2000, 69, 70-76. https://doi.org/10.1016/S0921-5107(99)00269-X
  16. Zhang, M.-L.; Peng, K.-Q.; Fan, X.; Jie, J.-S.; Zhang, R.-Q.; Lee, S.-T.; Wong, N.-B. Journal of Physical Chemistry C 2008, 112, 4444-4450. https://doi.org/10.1021/jp077053o
  17. Nakato, Y.; Hiramoto, M.; Iwakabe, Y.; Tsubomura, H. Journal of the Electrochemical Society 1985, 132, 330-334. https://doi.org/10.1149/1.2113832
  18. Koshida, N.; Echizenya, K. Journal of the Electrochemical Society 1991, 138, 837. https://doi.org/10.1149/1.2085687
  19. Oh, J.; Deutsch, T. G.; YuanH, H.-C.; Branz, O. M. Energy and Environmental Science 2011, 4, 1690. https://doi.org/10.1039/c1ee01124c
  20. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chemical Reviews 2010, 110, 6446-6473. https://doi.org/10.1021/cr1002326

Cited by

  1. Platinum Monolayer Electrocatalyst on Gold Nanostructures on Silicon for Photoelectrochemical Hydrogen Evolution vol.7, pp.7, 2013, https://doi.org/10.1021/nn401720x
  2. Ordered arrays of tilted silicon nanobelts with enhanced solar hydrogen evolution performance vol.6, pp.4, 2014, https://doi.org/10.1039/c3nr05360a
  3. Boron-Doped Silicon Diatom Frustules as a Photocathode for Water Splitting vol.7, pp.31, 2015, https://doi.org/10.1021/acsami.5b04640
  4. Large-area ordered P-type Si nanohole arrays as photocathode for highly efficient hydrogen production by photoelectrochemical water splitting vol.27, pp.5, 2016, https://doi.org/10.1007/s10854-016-4451-3
  5. Silicon Nanowire Photocathodes for Photoelectrochemical Hydrogen Production vol.6, pp.8, 2016, https://doi.org/10.3390/nano6080144
  6. Nanostructured p-Type Semiconductor Electrodes and Photoelectrochemistry of Their Reduction Processes vol.9, pp.5, 2016, https://doi.org/10.3390/en9050373
  7. A quantum dot sensitized catalytic porous silicon photocathode vol.2, pp.25, 2011, https://doi.org/10.1039/c4ta01677g