• Title/Summary/Keyword: Electrochemical system

Search Result 944, Processing Time 0.025 seconds

An Investigation of Interfacial Strength in Epoxy-based Solid Polymer Electrolytes for Structural Composite Batteries

  • Mohamad A. Raja;Su Hyun Lim;Doyun Jeon;Hyunsoo Hong;Inyeong Yang;Sanha Kim;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.416-421
    • /
    • 2023
  • Multifunctional composite materials capable of both load-carrying and energy functions are promising innovative candidates for the advancement of contemporary technologies owing to their relative feasibility, cost-effectiveness, and optimized performance. Carbon fiber (CF)-based structural batteries utilize the graphitic inherent structure to enable the employment of carbon fibers as electrodes, current collectors, and reinforcement, while the matrix system is an ion-conduction and load transfer medium. Although it is possible to enhance performance through the modification of constituents, there remains a need for a systematic design methodology scheme to streamline the commercialization of structural batteries. In this work, a bi-phasic epoxy-based ionic liquid (IL) modified structural battery electrolyte (SBE) was developed via thermally initiated phase separation. The polymer's morphological, mechanical, and electrochemical characteristics were studied. In addition, the interfacial shear strength (IFSS) between CF/SBE was investigated via microdroplet tests. The results accentuated the significance of considering IFSS and matrix plasticity in designing composite structural batteries. This approach is expected to lay the foundation for realizing smart structures with optimized performance while minimizing the need for extensive trial and error, by paving the way for a streamlined computational design scheme in the future.

Scaleup of Electrolytic Reactors in Pyroprocessing (Pyroprocessing 공정에 사용되는 전해반응장치의 규모 확대)

  • Yoo, Jae-Hyung;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • In the pyroprocessing of spent nuclear fuels, fuel materials are recovered by electrochemical reactions on the surface of electrodes as well as stirring the electrolyte in electrolytic cells such as electrorefiner, electroreducer and electrowinner. The system with this equipment should first be scaled-up in order to commercialize the pyroprocessing. So in this study, the scale-up for those electrolytic cells was studied to design a large-scale system which can be employed in a commercial process in the future. Basically the dimensions of both electrolytic cells and electrodes should be enlarged on the basis of the geometrical similarity. Then the criterion of constant power input per unit volume, characterizing the fluid behavior in the cells, was introduced in this study and a calculation process based on trial-and-error methode was derived, which makes it possible to seek a proper speed of agitation in the electrolytic cells. Consequently examples of scale-up for an arbitrary small scale system were shown when the criterion of constant power input per unit volume and another criterion of constant impeller tip speed were respectively applied.

  • PDF

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

Artificial Control of ZnO Nanorods via Manipulation of ZnO Nanoparticle Seeds (산화아연 나노핵의 조작을 통한 산화아연 나노로드의 제어)

  • Shin, Kyung-Sik;Lee, Sam-Dong;Kim, Sang-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.399-399
    • /
    • 2008
  • Synthesis and characterization of ZnO structure such as nanowires, nanorods, nanotube, nanowall, etc. have been studied to multifunctional application such as optical, nanoscale electronic and chemical devices because it has a room-temperature wide band gap of 3.37eV, large exiton binding energy(60meV) and various properties. Various synthesis methods including chemical vapor deposition (CVD), physical vapor deposition, electrochemical deposition, micro-emulsion, and hydrothermal approach have been reported to fabricate various kinds of ZnO nanostructures. But some of these synthesis methods are expensive and difficult of mass production. Wet chemical method has several advantage such as simple process, mass production, low temperature process, and low cost. In the present work, ZnO nanorods are deposited on ITO/glass substrate by simple wet chemical method. The process is perfomed by two steps. One-step is deposition of ZnO seeds and two-step is growth of ZnO nanorods on substrates. In order to form ZnO seeds on substrates, mixture solution of Zn acetate and Methanol was prepared.(one-step) Seed layers were deposited for control of morpholgy of ZnO seed layers by spin coating process because ZnO seeds is deposited uniformly by centrifugal force of spin coating. The seed-deposited samples were pre-annealed for 30min at $180^{\circ}C$ to enhance adhesion and crystallinnity of ZnO seed layer on substrate. Vertically well-aligned ZnO nanorods were grown by the "dipping-and-holding" process of the substrates into the mixture solution consisting of the mixture solution of DI water, Zinc nitrate and hexamethylenetetramine for 4 hours at $90^{\circ}C$.(two-step) It was found that density and morphology of ZnO nanorods were controlled by manipulation of ZnO seeds through rpm of spin coating. The morphology, crystallinity, optical properties of the grown ZnO nanostructures were carried out by field-emission scanning electron microscopy, high-resolution electron microscopy, photoluminescence, respectively. We are convinced that this method is complementing problems of main techniques of existing reports.

  • PDF

Electrochemical Treatment of Dyeing Wastewater using Insoluble Catalyst Electrode (불용성 촉매전극을 이용한 염색폐수의 전기화학적 처리)

  • Um, Myeong-Heon;Ha, Bum-Yong;Kang, Hak-Chul
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.133-144
    • /
    • 2003
  • In this study, Insoluble catalyst electrode for oxide systems were manufactured, by using of them, carried out experiments on electrolytic treatment of dyeing wastewater containing persistent organic compounds, and then made a comparative study of the efficiency of treatment for environmental pollutants and whether each of them is valuable of not as an electrode for soluble electrode(Fe, Al) and insoluble electrode(SUS, R.C.E; Replaced Catalyst Electrode) which were used in the electrolytic system. Besides, it was investigated the conditions for electrolytic treatment to find the maximum efficiency of electrolytic treatment. As the result of this study, by using of insoluble catalyst electrode for oxide can solved the stability of electrode that is one of the greatest problems in order to put to practical use of electrolysis process in the treatment of the sewage and wastewater and the result runs as follows; 1. The durability of insoluble catalyst electrode(R.C.E) can be verified the most favorable when the molar ratio of $RuO_2-SnO_2-IrO_2-TiO_2$(4 compounds system) is 70/20/5/5. 2. The efficiency of treatment was obtained a more than 90% goodness for CODMn and also a good results for T-N removal in the experimental conditions of the distance of electrode 5 mm, time of electrolysis 60 minutes, permissible voltage 10V, processing capacity $0.5{\ell}$.

  • PDF

Effect of Coolant on PEMFC Performance in Low Humidification Condition (저가습 조건에서 냉각 유체의 고분자전해질 연료전지에 대한 영향)

  • Lee, Hung-Joo;Song, Hyun-Do;Kwon, Jun-Taek;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • Proton exchange membrane fuel cell(PEMFC) performance could be affected by various factors such as cell temperature, total pressure, partial pressure of reactants and relative humidity. Hydrogen ion is combined with water to form hydronium ion [$H_3O^+$] and pass through membrane resulting electricity generation. Cooling system is needed to remove heat and other uses on large scale fuel cell. In case that collant conductivity is increased, fuel cell performance could be decreased because produced electricity could be leaked through coolant. In this study, triple distilled water(TDW) and antifreeze solution containing ethylene glycol was used to observe resistance change. Resistance of TDW was taken 28 days to reach preset value, and effect on fuel cell operation was not observed. Resistance of antifreeze solution was not reached to preset value up to 48 days, but performance failure occurred presumably caused by bipolar plate junction resulting stoppage resistance experiment. Generally PEMFC humidification is performed near-saturated operating conditions at various temperatures and pressures, but non-humidifying condition could be applied in small scale fuel cell to improve efficiency and reduce system cost. However, it was difficult to operate large scale fuel cell without humidifying, especially higher than $50{\sim}60^{\circ}C$. In case of small flux such as 0.78 L/min, temperature difference between inlet and outlet was occurred larger than other cases resulting performance decrease. Non-humidifying performance experiments were done at various cell temperature. When both of anode and cathode humidification were removed, cell performance was strongly depended on cell operating temperature.

Effect of Passing Aged Years and Coating Thickness on Corrosion Properties of Reinforcing Steel in Mortar (W/C:0.5) (모르타르(W/C:0.5)내의 철근의 부식 특성에 미치는 재령 년수와 피복두께의 영향)

  • Moon, Kyung-Man;Lee, Sung-Yul;Jeong, Jin-A;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.99-105
    • /
    • 2015
  • The structures of reinforced concrete have been extensively increased with rapid development of industrial society. Futhermore, these reinforced concretes are easy to expose to severe corrosive environments such as seawater, contaminated water, acid rain and seashore etc.. Thus, corrosion problem of steel bar embedded in concrete is very important in terms of safety and economical point of view. In this study, specimens having six different coating thickness (W/C:0.5) were prepared and immersed in flowing seawater for five years to evaluate the effect of coating thickness and immersion time on corrosion property. The polarization characteristics of these embedded steel bars were investigated using electrochemical methods such as corrosion potential, anodic polarization curve, and impedance. At the 20-day immersion, the corrosion potentials exhibited increasingly nobler values with coating thickness. However, after 5-yr. immersion their values were shifted in the negative direction, and the relationship between corrosion potential and coating thickness was not shown. Although 5-yr. immersion lowered corrosion potential, 5-yr. immersion did not increase corrosion rate. In addition, after 5-yr. immersion, the thinner cover thickness, corrosion current density was decreased with thinning coating thickness. It is due to the fact that ease incorporation of water, dissolved oxygen and chloride ion into a steel surface caused corrosion and hence, leaded to the formation of corrosion product. The corrosion product plays the role as a corrosion barrier and increases polarization resistance. The corrosion probability evaluated depending on corrosion potential may not be a good method for predicting corrosion probability. Hence, the parameters including cover thickness and passed aged years as well as corrosion potential is suggested to be considered for better assessment of corrosion probability of reinforced steel exposed to partially or fully in marine environment for long years.

Effect on Corrosion Characteristics of SS 400 Steel by Alkali Water pH from Electrolysis of City Water (수돗물의 전기분해에 의해서 생성된 알카리수의 pH가 SS 400강의 부식특성에 미치는 영향)

  • Moon, Kyung-Man;Ryoo, Hae-Jeon;Kim, Yun-Hae;Jeong, Jae-Hyun;Baek, Tae-Sil
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.248-255
    • /
    • 2017
  • Many rivers and seas have been affected by environmental contamination. Therefore, city water supplies often require a high-degree purification treatment to provide safe drinking water. However, in order to achieve a high-degree purification treatment, a large amount of chlorine has to be added to sterilize city drinking water. The added chlorine reacts chemically with water and forms hypochlorous and chlorine ions. The hypochlorous ionizes with hypochlorous ions and hydrogen ions. As a result, the city water contains a large amount of chlorine ion. As such, when city water is used with domestic boilers, many kinds of heat exchangers, and the engines of vehicle and ships, there are often corrosion problems. In this study, alkali water was electrochemically made by electrolysis of city water, and corrosion properties between alkali and city water were investigated with an electrochemical method. Most of the chlorine ions are thought to not be contained in the alkali water because the alkali water is created in the cathodic chamber with an electrolysis process. In other words, the chlorine ion can be mostly removed by its migration from a cathodic chamber to an anodic chamber. Moreover, the alkali water also contains a large amount of hydroxide ion. The alkali water indicated relatively good corrosion resistance compared to the city water and the city water exhibited a local corrosion pattern due to the chlorine ion created by a high-degree purification treatment. In contrast, the alkali water showed a general corrosion pattern. Consequently, alkali water can be used with cooling water to inhibit local corrosion by chlorine ions in domestic boilers, various heat exchangers and the engine of ships and for structural steel in a marine structure.

Study on Oxidation or Reduction Behavior of Cs-Te-O System with Gas Conditions of Voloxidation Process (휘발산화 공정 조건에 따른 Cs-Te-O 시스템의 산화 환원 거동 연구)

  • Park, Byung Heung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.700-708
    • /
    • 2013
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. Pyroprocessing has been developed with the dry technologies which are performed under high temperature conditions excluding any aqueous processes. Pyro-processes which are based on the electrochemical principles require pretreatment processes and a voloxidation process is considered as a pretreatment step for an electrolytic reduction process. Various kinds of gas conditions are applicable to the voloxidation process and the understanding of Cs behavior during the process is of importance for the analyses of waste characteristics and heat load on the overall pyroprocessing. In this study, the changes of chemical compounds with the gas conditions were calculated by analyzing gas-solid reaction behavior based on the chemical equilibria on a Cs-Te-O system. $Cs_2TeO_3$ and $Cs_2TeO_4$ were selected after a Tpp diagram analysis and it was confirmed that they are relatively stable under oxidizing atmospheres while it was shown that Cs and Te would be removed by volatilization under reducing atmosphere at a high temperature. This work provided basic data for predicting Cs behavior during the voloxidation process at which compounds are chemically distributed as the first stage in the pyroprocessing and it is expected that the results would be used for setting up material balances and related purposes.

Stability of TiN and WC Coated Dental Abutment Screw (TiN 및 WC코팅된 치과용 어버트먼트 나사의 안정성)

  • Son, M.K.;Lee, C.H.;Chung, C.H.;Jeong, Y.H.;Choe, H.C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.292-300
    • /
    • 2008
  • Dental implant system is composed of abutment, abutment screw and implant fixture connected with screw. The problems of loosening/tightening and stability of abutment screw depend on surface characteristics, like a surface roughness, coating materials and friction resistance and so on. For this reason, surface treatment of abutment screw has been remained research problem in prosthodontics. The purpose of this study was to investigate the stability of TiN and WC coated dental abutment screw, abutment screw was used, respectively, for experiment. For improving the surface characteristics, TiN and WC film coating was carried out on the abutment screw using EB-PVD and sputtering, respectively. In order to observe the coating surface of abutment screw, surfaces of specimens were characterized, using field emission scanning electron microscope(FE-SEM) and energy dispersive x-ray spectroscopy(EDS). The stability of TiN and WC coated abutment screw was evaluated by potentiodynamic, and cyclic potentiodynamic polarization method in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The corrosion potential of TiN coated specimen was higher than those of WC coated and non-coated abutment screw. Whereas, corrosion current density of TiN coated screws was lower than those of WC coated and non-coated abutment screw. The stability of screw decreased as following order; TiN coating, WC coating and non-coated screw. The pitting potentials of TiN and WC coated specimens were higher than that of non-coated abutment screw, but repassivation potential of WC coated specimen was lower than those of TiN coated and non-coated abutment screws due to breakdown of coated film. The degree of local ion dissolution on the surface increased in the order of TiN coated, non-coated and WC coated screws.