DOI QR코드

DOI QR Code

Effect of Coolant on PEMFC Performance in Low Humidification Condition

저가습 조건에서 냉각 유체의 고분자전해질 연료전지에 대한 영향

  • Lee, Hung-Joo (Department of Chemical Engineering, University of Ulsan) ;
  • Song, Hyun-Do (Department of Chemical Engineering, University of Ulsan) ;
  • Kwon, Jun-Taek (Department of Chemical Engineering, University of Ulsan) ;
  • Kim, Jun-Bom (Department of Chemical Engineering, University of Ulsan)
  • 이흥주 (울산대학교 화학공학부 연료전지연구실) ;
  • 송현도 (울산대학교 화학공학부 연료전지연구실) ;
  • 권준택 (울산대학교 화학공학부 연료전지연구실) ;
  • 김준범 (울산대학교 화학공학부 연료전지연구실)
  • Published : 2007.02.28

Abstract

Proton exchange membrane fuel cell(PEMFC) performance could be affected by various factors such as cell temperature, total pressure, partial pressure of reactants and relative humidity. Hydrogen ion is combined with water to form hydronium ion [$H_3O^+$] and pass through membrane resulting electricity generation. Cooling system is needed to remove heat and other uses on large scale fuel cell. In case that collant conductivity is increased, fuel cell performance could be decreased because produced electricity could be leaked through coolant. In this study, triple distilled water(TDW) and antifreeze solution containing ethylene glycol was used to observe resistance change. Resistance of TDW was taken 28 days to reach preset value, and effect on fuel cell operation was not observed. Resistance of antifreeze solution was not reached to preset value up to 48 days, but performance failure occurred presumably caused by bipolar plate junction resulting stoppage resistance experiment. Generally PEMFC humidification is performed near-saturated operating conditions at various temperatures and pressures, but non-humidifying condition could be applied in small scale fuel cell to improve efficiency and reduce system cost. However, it was difficult to operate large scale fuel cell without humidifying, especially higher than $50{\sim}60^{\circ}C$. In case of small flux such as 0.78 L/min, temperature difference between inlet and outlet was occurred larger than other cases resulting performance decrease. Non-humidifying performance experiments were done at various cell temperature. When both of anode and cathode humidification were removed, cell performance was strongly depended on cell operating temperature.

고분자전해질 연료전지의 성능은 cell 온도, 전체 압력, 반응 기체의 부분 압력 상대습도와 같은 다양한 요인들에 의해 영향을 받는다. 이온화된 수소 이온은 $H_3O^+$의 형태로 membrane을 통과하여 물을 생성하는 반응으로 전기를 발생시킨다. 대용량 연료전지에서는 부수적으로 생성되는 열을 제거하거나 다른 용도로 사용할 목적으로 냉각시스템이 필요하다. 냉각수의 전도도가 상승할 경우에 연료전지에서 발생된 전류의 일부가 냉각수를 통하여 누설되어 연료전지의 성능을 감소시킬 수 있다. 본 연구에서는 3차 증류수와 ethylene glycol이 함유되어 있는 부동액을 사용하여 저항 수치 변화를 관찰하는 실험을 수행하였다. 3차 증류수의 경우 저항값이 설정치 이하로 내려가는데 약 28일이 소요되었고, 연료전지의 운전에 의한 영향은 관찰되지 않았다. 부동액을 냉각수로 사용한 경우는 43일이 지나도 저항값이 설정치 이하로 내려가지는 않았지만, stack 분리판의 접착부에 이상이 생긴 것으로 추정되는 연료전지의 성능 저하가 발생하여 전도도 실험을 중단하였다. 고분자전해질 연료전지에서는 수소이온의 이온전도성 저하를 방지하기 위하여 외부에서 가습하여 주는 방식이 일반적이지만, 소용량 연료전지에서는 무가습 조건을 적용하여 연료전지의 효율을 높이고 제작단가도 경감할 수 있다. 이를 위하여 저가습 및 무가습 실험을 수행하였으나 대용량 연료전지에서는 양측 무가습인 경우에 $50{\sim}60^{\circ}C$ 이상의 고온에서 성능이 발현되기 어려운 것으로 관찰되었다. 냉각수의 유량을 다르게 하여 실험을 수행한 경우에는 0.78L/min과 같은 낮은 유량에서 출구온도와 입구온도를 측정하여 본 결과 두 온도 사이에 ${\Delta}T$가 다른 유량에서보다 크게 발생하여 성능이 감소된 것으로 사료된다. 이와 같이 냉각수의 온도와 유량을 다르게 하여 양측 무가습 실험을 수행한 결과, 연료전지의 성능이 cell 온도에 직접적인 연관이 있는 것으로 관찰되었다.

Keywords

References

  1. G. Maggio, V. Recupero, and C. Mantegazza, 'Modeling of Temperature distribution in a solid polymer electrolyte fuel cell stack', J. Power Sources, 62, 167 (1996) https://doi.org/10.1016/S0378-7753(96)02433-0
  2. M. V. Williams, H. R. Kunz, and J. M. Fenton, 'Operation of Nafion -based PEM fuel cells with no external humidification: influence of operating conditions and gas diffusion layers', J. Power Sources, 135, 122 (2004) https://doi.org/10.1016/j.jpowsour.2004.04.010
  3. F. N. Buchi and S. Srinivasan, 'Operating proton exchange membrane fuel cells without external humidification of the reactant gases', J. Electrochem. Soc., 144(8),2767 (1997) https://doi.org/10.1149/1.1837893
  4. S. H. Chan, S. K. Goh, and S. P. Jiang, 'A mathematical model of polymer electrolyte fuel cell with anode CO kinetics', Electrochim. Acta, 48(13), 1905 (2003) https://doi.org/10.1016/S0013-4686(03)00269-X
  5. D. Picot, R. Metkmeijer, J. J. Bezian, and L. Rouveyre, 'Impact of the water symmetry factor on humidification and cooling strategies for PEM fuel cell stacks', J. Power Sources, 75, 251 (1998) https://doi.org/10.1016/S0378-7753(98)00123-2
  6. I. M. Hsing and P. Futerko, 'Two-dimensional simulation of water transport in polymer electrolyte fuel cells', Chem. Eng. Sci., 55, 4209 (2000) https://doi.org/10.1016/S0009-2509(00)00066-X
  7. M. Noponen, T. Mennola, M. Mikkola, T. Hottinen, and P. Lund, 'Measurement of current distribution in a free-breathing PEMFC', J. Power Sources, 106(1), 304 (2002) https://doi.org/10.1016/S0378-7753(01)01063-1
  8. Z. Qi, A. Kaufman, 'PEM fuel cell stacks operated under dry-reactant conditions', J. Power Sources, 109(2), 469 (2002) https://doi.org/10.1016/S0378-7753(02)00111-8
  9. D. R Sena, E. A. Ticianelli, V A. Pagain, and E. R. Gonzalez, 'Effect of water transport in a PEFC at low temperatures operating with dry hydrogen', J. Electroanal. Chem., 477(2), 164 (1999) https://doi.org/10.1016/S0022-0728(99)00401-5
  10. S. H. Kwak, T. H. Yang, C. S. Kim, and K. H. Yoon, 'The effect of Platinum loading in the self-humidifying polymer electrolyte membrane on water uptake', J. Power Sources, 118, 200 (2003) https://doi.org/10.1016/S0378-7753(03)00094-6
  11. T. H. Yang, Y. G. Yoon, C. S. Kim, S. H. Kwak, and K. H. Yoon, 'A novel preparation method for a self-humidifying polymer electrolyte membrane', J. Power Sources, 106, 328 (2002) https://doi.org/10.1016/S0378-7753(01)01025-4

Cited by

  1. Analysis of water and thermal management with coolant operating conditions for a proton exchange membrane fuel cell vol.10, pp.2, 2010, https://doi.org/10.1016/j.cap.2009.11.008