• Title/Summary/Keyword: Electrochemical oxidation

Search Result 679, Processing Time 0.03 seconds

Electro-oxidation Kinetics of Cerium(III) in Nitric Acid Using Divided Electrochemical Cell for Application in the Mediated Electrochemical Oxidation of Phenol

  • Matheswaran, Manickam;Balaji, Subramanian;Chung, Sang-Joon;Moon, Il-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1329-1334
    • /
    • 2007
  • The electrochemical oxidation of cerium(III) was carried out using divided and undivided electrochemical cells in nitric acid medium. It was found that divided cell with Nafion 324 as the separator gave good conversion yield with high current efficiency compared to the undivided cell. The efficiency of the divided electrochemical cell was further optimized in terms of cell voltage, temperature, flow rate of solution recirculation, concentrations of Ce(III) and nitric acid. The better conditions for 1 M Ce(III) in 3 M nitric acid were found to be 2.5 V, 363 K and 100 mL/min recirculation flow rate based on the current efficiency under the experimental conditions investigated. The Ce(IV) oxidant produced was used as a mediator for the mineralization of phenol. The mineralization efficiency of the cerium mediated electrochemical oxidation was found rapid and higher compared to the direct electrochemical oxidation based on CO2 evolution under the same conditions.

Electrochemical Oxidation of Ethanol at $RuO_2-Modified$ Nickel Electrode in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim Jae-Woo;Park Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.76-80
    • /
    • 2000
  • Electrochemical oxidation of ethanol has been studied at nickel and $RuO_2-modified$ nickel electrodes in 1 M KOH using electrochemical impedance spectroscopy. Equivalent circuits have been worked out from simulation of impedance data to model oxidation of ethanol as well as the passivation of the electrode. The charge-transfer resistances for oxidation of these electrodes became smaller in the presence of ethanol than in its absence. The nickel substrate facilitated ethanol oxidation at $RuO_2-modified$ nickel electrodes. We also describe the Performance of nanosized electrocatalysts of the same composition in comparison to those of the bulk electrodes. The nanosized electrodes were obtained by electrode-positing the alloy from complexed form of these metal ions with fourth and fifth generation polyamidoamine dendrimers.

Electrochemical Oxidation of Carbon Felt for Redox Flow Battery (Redox flow battery용 carbon felt 전극의 전기화학적 산화)

  • Jung, Young-Guan;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.721-727
    • /
    • 2011
  • All vanadium redox-flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide rage of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. In this study, carbon felt electrodes were treated by electrochemical oxidation with KOH, and the cyclic voltammetry were studied in order to investigate redox reactivity of vanadium ion species with carbon felt electrodes. Besides the effect of electrochemical oxidation on the surface chemistry of carbon felt electrodes were investigated using the X-ray photoelectron spectroscopy (XPS). After electrochemical oxidation, XPS analysis of PAN based GF20-3 carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after electrochemical oxidation. Redox reaction characteristics using cyclic voltammetry (CV) were ascertained that the electrochemical treated electrode were more reversible than the untreated electrode.

Electrochemical Oxidation of Ethanol at Nickel Hydroxide Electrodes in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim, Jae-Woo;Park, Su-Moon
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.117-124
    • /
    • 2005
  • Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of $Ni(OH)_2$ to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the $\beta-Ni(OH)_2/\beta-NiOOH$ redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.

Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron (과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화)

  • Kim, Cheolyong;Ahn, Jun-Young;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.17-25
    • /
    • 2017
  • The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

Effect of Electrochemical Oxidation Potential on Biofilter for Bacteriological Oxidation of VOCs to $CO_2$

  • Kang Hye-Sun;Lee Jong-Kwang;Kim Moo-Hoon;Park Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.399-407
    • /
    • 2006
  • In this study, an electrical conductive carbon fiber was used as a biofilter matrix to electrochemically improve the biofilter function. A bioreactor system was composed of carbon fiber (anode), titanium ring, porcelain ring, inorganic nutrient reservoir, and VOC reservoir. Electric DC power of 1.5 volt was charged to the carbon fiber anode (CFA) to induce the electrochemical oxidation potential on the biofilter matrix, but not to the carbon fiber (CF). We tested the effects of electrochemical oxidation potential charged to the CFA on the biofilm structure, the bacterial growth, and the activity for metabolic oxidation of VOCs to $CO_2$, According to the SEM image, the biofilm structure developed in the CFA appeared to be greatly different from that in the CF. The bacterial growth, VOCs degradation, and metabolic oxidation of VOCs to $CO_2$ in the CFA were more activated than those in the CF. On the basis of these results, we propose that the biofilm structure can be improved, and the bacterial growth and the bacterial oxidation activity of VOCs can be activated by the electrochemical oxidation potential charged to a biofilter matrix.

Effects of electrochemical oxidation of carbon fibers on interfacial shear strength using a micro-bond method

  • Kim, Dong-Kyu;An, Kay-Hyeok;Bang, Yun Hyuk;Kwac, Lee-Ku;Oh, Sang-Yub;Kim, Byung-Joo
    • Carbon letters
    • /
    • v.19
    • /
    • pp.32-39
    • /
    • 2016
  • In this work, we studied the effects of electrochemical oxidation treatments of carbon fibers (CFs) on interfacial adhesion between CF and epoxy resin with various current densities. The surface morphologies and properties of the CFs before and after electrochemical-oxidation-treatment were characterized using field emission scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and single-fiber contact angle. The mechanical interfacial shear strength of the CFs/epoxy matrix composites was investigated by using a micro-bond method. From the results, electrochemical oxidation treatment introduced oxygen functional groups and increased roughness on the fiber surface. The mechanical interfacial adhesion strength also showed higher values than that of an untreated CF-reinforced composite.

Electrochemical Promotion of Pt Catalyst for The Oxidation of Carbon Monoxide

  • Shin, Seock-Jae;Kang, An-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.187-195
    • /
    • 2000
  • Electrochemical promotion of the reaction rate was investigated for CO oxidation in a solid electrolyte catalytic reactor where a thin film of Pt was deposited on the yttria stabilized zirconia as an electrode as well as a catalyst. It was shown under open circuit condition that potential was a mixed potential of $O_2$exchange reaction and electrochemical reaction induced by CO. The effect of electrochemical modification on the CO oxidation rate was studied at various overpotentials and $P_{CO}$$P_{O2}$.

  • PDF

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4441-4448
    • /
    • 2022
  • The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti

  • Auguste, Appia Foffie Thiery;Quand-Meme, Gnamba Corneil;Ollo, Kambire;Mohamed, Berte;Sahi placide, Sadia;Ibrahima, Sanogo;Lassine, Ouattara
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.82-89
    • /
    • 2016
  • In this work, a ruthenium dioxide electrode has been prepared by thermal decomposition at 400 ℃ then used for the oxidation of commercial amoxicillin. The physical characterization showed that RuO2 electrode presents a mud cracked structure. Its electrochemical characterization has revealed an increase of the voltammetric charge in acid electrolyte compared to neutral electrolyte indicating the importance of protons in its surface redox processes. The voltammetric study of the oxidation of amoxicillin has been investigated. It has been obtained that the oxidation of amoxicillin is controlled by both adsorption and diffusion processes. Moreover, the oxidation of amoxicillin occurs via direct and indirect processes in free or electrolyte containing chlorides. Through preparative electrolysis, enhancement of amoxicillin oxidation was observed in the presence of chloride where the amoxicillin degradation yield reached more than 50 % compared to less than 5% in the absence of chlorides. Spectrophotometric investigations have revealed the degradation of intermediates absorbing at 350 nm.