DOI QR코드

DOI QR Code

Electro-oxidation Kinetics of Cerium(III) in Nitric Acid Using Divided Electrochemical Cell for Application in the Mediated Electrochemical Oxidation of Phenol

  • Published : 2007.08.20

Abstract

The electrochemical oxidation of cerium(III) was carried out using divided and undivided electrochemical cells in nitric acid medium. It was found that divided cell with Nafion 324 as the separator gave good conversion yield with high current efficiency compared to the undivided cell. The efficiency of the divided electrochemical cell was further optimized in terms of cell voltage, temperature, flow rate of solution recirculation, concentrations of Ce(III) and nitric acid. The better conditions for 1 M Ce(III) in 3 M nitric acid were found to be 2.5 V, 363 K and 100 mL/min recirculation flow rate based on the current efficiency under the experimental conditions investigated. The Ce(IV) oxidant produced was used as a mediator for the mineralization of phenol. The mineralization efficiency of the cerium mediated electrochemical oxidation was found rapid and higher compared to the direct electrochemical oxidation based on CO2 evolution under the same conditions.

Keywords

References

  1. Chiang, L. C.; Chang, J. E.; Tseng, S. C. Water Sci. Technol. 1997, 36, 123
  2. Murphy, O. J.; Hitchens, G. D.; Kaba, L.; Verostko, C. E. Water Res. 1992, 26, 443 https://doi.org/10.1016/0043-1354(92)90044-5
  3. Johnson, S.; Houk, L. L.; Feng, J.; Houk, R.; Johnson, D. Environ. Sci. Technol. 1999, 33, 2638 https://doi.org/10.1021/es981045r
  4. Simond, O.; Schaller, V.; Comninellis, Ch. Electrochim. Acta 1997, 42, 2009 https://doi.org/10.1016/S0013-4686(97)85475-8
  5. Won, M. S.; Shim, Y. B.; Park, S. M. Bull. Korean Chem. Soc. 1992, 6, 680
  6. Tzedakis, T.; Savall, A. J. Appl. Electrochem. 1997, 27, 589 https://doi.org/10.1023/A:1018458930982
  7. Pyo, M.; Moon, I. S. Bull. Korean Chem. Soc. 2005, 26, 899 https://doi.org/10.5012/bkcs.2005.26.6.899
  8. Farmer, J. C.; Wang, F. T.; Hawley Fedder, R. A.; Lewis, P. R.; Summers, L. J.; Follies, L. J. Electrochem. Soc. 1992, 139, 654 https://doi.org/10.1149/1.2069280
  9. Farmer, J. C.; Wang, F. T.; Lewis, P. R.; Summers, L. J. J. Electrochem. Soc. 1992, 139, 3025 https://doi.org/10.1149/1.2069027
  10. Lehmani, A.; Turq, P.; Simonin, J. P. J. Electrochem. Soc. 1996, 143, 1861
  11. Nelson, N.; Neustedter, T.; Steward, G. A.; Pells, W.; Oberg, S.; Verla, J. The Cerox Process: New Technology for Organic Hazardous Waste Destruction, Waste Management in the 21st Century, American Chemical Society Meeting San Francisco, May 2000
  12. Galla, U.; Kritzer, P.; Bringmann, J.; Schmieder, H. Chem. Eng. Technol. 2000, 23, 230 https://doi.org/10.1002/(SICI)1521-4125(200003)23:3<230::AID-CEAT230>3.0.CO;2-3
  13. Varela, J.; Oberg, S.; Neustedter, T. M.; Nelson, N. Environ. Prog. 2001, 20, 261 https://doi.org/10.1002/ep.670200415
  14. Turner, A. D. Membrane Technol. 2002, 142, 6
  15. Armenta, M. E.; Diaz, A. F. Environ. Sci. Technol. 2005, 39, 5872 https://doi.org/10.1021/es048104n
  16. Steele, D. F. Platinum Met. Rev. 1990, 34, 10
  17. Nelson, N. Platinum Met. Rev. 2002, 46, 18
  18. Bringmann, J.; Ebert, K.; Galla, U.; Schimider, H. J. J. Appl. Electrochem. 1995, 25, 846 https://doi.org/10.1007/BF00772203
  19. Bludska, J.; Vondrak, J. Chemicky Prumysl. 1986, 36, 299
  20. Bishop, E.; Cofve, P. Analyst 1981, 106, 316 https://doi.org/10.1039/an9810600316
  21. Paulenova, A.; Creager, S. E.; Navratil, J. D.; Wei, Y. J. Power Sources 2002, 109, 431 https://doi.org/10.1016/S0378-7753(02)00109-X
  22. Randle, T. H.; Kuhn, A. T. Aust. J. Chem. 1989, 42, 229 https://doi.org/10.1071/CH9890229
  23. Randle, T. H.; Kuhn, A. T. Aust. J. Chem. 1989, 42, 1527 https://doi.org/10.1071/CH9891527
  24. Kotz, R.; Stucki, S.; Carcer, B. J. Appl. Electrochem. 1991, 21, 14 https://doi.org/10.1007/BF01103823
  25. Klekens, P.; Steen, L.; Ponche, H. Electrochim. Acta 1981, 26, 841 https://doi.org/10.1016/0013-4686(81)85043-8
  26. Spotnitz, R. M.; Kreh, R. P.; Lundquist, J. T.; Press, P. J. J. Appl. Electrochem. 1990, 20, 209 https://doi.org/10.1007/BF01033596
  27. Been, J.; Oloman, C. W. J. Appl. Electrochem. 1993, 23, 1301
  28. Devadoss, V.; Noel, M.; Jayaraman, K.; Ahmed Basha, C. J. Appl. Electrochem. 2003, 33, 319 https://doi.org/10.1023/A:1024136500644
  29. Raju, T.; Ahmed Basha, C. Chem. Eng. J. 2005, 114, 55 https://doi.org/10.1016/j.cej.2005.09.004
  30. Wei, Y.; Fang, B.; Arai, T.; Kumagai, M. J. Appl. Electrochem. 2005, 35, 561 https://doi.org/10.1007/s10800-005-1820-7
  31. Sedneva, T. A. Russ. J. Appl. Chem. 2005, 78, 907 https://doi.org/10.1007/s11167-005-0418-5
  32. Balaji, S.; Chung, S. J.; Ramesh, T.; Moon, I. S. Chem. Eng. J. 2007, 126, 51 https://doi.org/10.1016/j.cej.2006.05.021
  33. Matheswaran, M.; Balaji, S.; Chung, S. J.; Moon, I. S. J. Ind. Eng. Chem. 2007, 13, 231
  34. Balaji, S.; Kokovkin, V. V.; Chung, S. J.; Moon, I. S. Water Res. 2007, 41, 1423 https://doi.org/10.1016/j.watres.2006.12.003
  35. Lee, J. W.; Chung, S. J.; Balaji, S.; Kokovkin, V. V.; Moon, I. S. Chemosphere 2007, 68, 1067 https://doi.org/10.1016/j.chemosphere.2007.01.073
  36. Chung, S. J.; Balaji, S.; Matheswaran, M.; Ramesh, T.; Moon, I. S. Water Sci. Technol. 2007, 55, 261
  37. Kokovkin, V. V.; Chung, S. J.; Balaji, S.; Matheswaran, M.; Moon, I. S. Korean J. Chem. Eng. 2007, 24(5), (in press) https://doi.org/10.1007/s11814-007-0037-3
  38. Balaji, S.; Chung, S. J.; Matheswaran, M.; Moon, I. S. Korean J. Chem. Eng. 2007, 24(6), (in press) https://doi.org/10.1007/s11814-007-0112-9
  39. Pleecher, D.; Valdes, E. M. Electrochim. Acta 1988, 33, 499 https://doi.org/10.1016/0013-4686(88)80167-1
  40. Horbez, D.; Storck, A. J. Appl. Electrochem. 1991, 21, 915 https://doi.org/10.1007/BF01042459
  41. Matheswaran, M.; Balaji, S.; Chung, S. J.; Moon, I. S. Catal Commun. 2007, 8, 1497 https://doi.org/10.1016/j.catcom.2006.12.017

Cited by

  1. Destruction of soluble organics generated during the dissolution of sintered uranium carbide by mediated electrochemical oxidation process vol.99, pp.1, 2011, https://doi.org/10.1524/ract.2011.1792
  2. The Development of Zn-Ce Hybrid Redox Flow Batteries for Energy Storage and Their Continuing Challenges vol.80, pp.2, 2015, https://doi.org/10.1002/cplu.201402103
  3. Thermally Modified Graphite Electrodes for the Positive Side of the Zinc-Cerium Redox Flow Battery vol.162, pp.6, 2015, https://doi.org/10.1149/2.0041506jes
  4. Cerium(IV)-mediated electrochemical oxidation process for destruction of organic pollutants in a batch and a continuous flow reactor vol.24, pp.6, 2007, https://doi.org/10.1007/s11814-007-0112-9
  5. Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions vol.29, pp.5, 2008, https://doi.org/10.5012/bkcs.2008.29.5.974
  6. Ce(III)/Ce(IV) in methanesulfonic acid as the positive half cell of a redox flow battery vol.56, pp.5, 2011, https://doi.org/10.1016/j.electacta.2010.12.038
  7. A Zinc-Cerium Cell for Energy Storage Using a Sodium‐Ion Exchange Membrane vol.1, pp.9, 2017, https://doi.org/10.1002/adsu.201700082
  8. Studies on Electrochemical Generation of Ceric Ions in Nitric Acid Medium vol.4, pp.31, 2007, https://doi.org/10.1002/slct.201900423