DOI QR코드

DOI QR Code

Electrochemical Oxidation of Phenol using Persulfate and Nanosized Zero-valent Iron

과황산염과 나노영가철을 이용한 페놀의 전기화학적 산화

  • Kim, Cheolyong (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Ahn, Jun-Young (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Kim, Tae Yoo (Department of Civil & Environmental Engineering, Pusan National University) ;
  • Hwang, Inseong (Department of Civil & Environmental Engineering, Pusan National University)
  • 김철용 (부산대학교 사회환경시스템공학과) ;
  • 안준영 (부산대학교 사회환경시스템공학과) ;
  • 김태유 (부산대학교 사회환경시스템공학과) ;
  • 황인성 (부산대학교 사회환경시스템공학과)
  • Received : 2017.01.16
  • Accepted : 2017.03.30
  • Published : 2017.04.30

Abstract

The efficiency and mechanism of electrochemical phenol oxidation using persulfate (PS) and nanosized zero-valent iron (NZVI) were investigated. The pseudo-first-order rate constant for phenol removal by the electrochemical/PS/NZVI ($1mA^*cm^{-2}/12$ mM/6 mM) process was $0.81h^{-1}$, which was higher than those of the electrochemical/PS and PS/NZVI processes. The electrochemical/PS/NZVI system removed 1.5 mM phenol while consuming 6.6 mM PS, giving the highest stoichiometric efficiency (0.23) among the tested systems. The enhanced phenol removal rates and efficiencies observed for the electrochemical/PS/NZVI process were attributed to the interactions involving the three components, in which the electric current stimulated PS activation, NZVI depassivation, phenol oxidation, and PS regeneration by anodic or cathodic reactions. The electrochemical/PS/NZVI process effectively removed phenol oxidation products such as hydroquinone and 1,4-benzoquinone. Since the electric current enhances the reactivities of PS and NZVI, process performance can be optimized by effectively manipulating the current.

Keywords

References

  1. An, D., Westerhoff, P., Zheng, M., Wu, M., Yang, Y., and Chiu, C., 2015, UV-activated persulfate oxidation and regeneration of NOM-Saturated granular activated carbon, Water Res., 73, 304-310. https://doi.org/10.1016/j.watres.2015.01.040
  2. Budaev S.L., Batoeva A.A., and Tsybikova B.A.. 2015, Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion, Minerals Eng., 81, 88-95. https://doi.org/10.1016/j.mineng.2015.07.010
  3. Chen, L., Jin, S., Fallgren, P.H., Swoboda-Colberg, N.G., Liu, F., and Colberg, P.J., 2012, Electrochemical depassivation of zerovalent iron for trichloroethene reduction, J. Hazard. Mater., 239, 265-269.
  4. Chen W. and Huang C., 2015, Mineralization of aniline in aqueous solution by electrochemical activation of persulfate, Chemosphere, 125, 175-181. https://doi.org/10.1016/j.chemosphere.2014.12.053
  5. Chen, W. and Su, Y., 2012, Removal of dinitrotoluenes in wastewater by sono-activated persulfate, Ultrason. Sonochem., 19(4), 921-927. https://doi.org/10.1016/j.ultsonch.2011.12.012
  6. Do, S., Kwon, Y., and Kong, S., 2010, Effect of metal oxides on the reactivity of persulfate/Fe (II) in the remediation of dieselcontaminated soil and sand, J. Hazard. Mater., 182(1), 933-936. https://doi.org/10.1016/j.jhazmat.2010.06.068
  7. Fang, G., Gao, J., Dionysiou, D.D., Liu, C., and Zhou, D., 2013, Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs, Environ. Sci. Technol., 47(9), 4605-4611. https://doi.org/10.1021/es400262n
  8. House, D.A., 1962, Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev., 62(3), 185-203. https://doi.org/10.1021/cr60217a001
  9. Hussain, I., Zhang, Y., Huang, S., and Du, X., 2012, Degradation of p-chloroaniline by persulfate activated with zero-valent iron, Chem. Eng. J., 203, 269-276. https://doi.org/10.1016/j.cej.2012.06.120
  10. Johnson, R.L., Tratnyek, P.G., and Johnson, R.O., 2008, Persulfate persistence under thermal activation conditions, Environ. Sci. Technol., 42(24), 9350-9356. https://doi.org/10.1021/es8019462
  11. Klausen, J., Ranke, J., and Schwarzenbach, R.P., 2001, Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron, Chemosphere, 44(4), 511-517. https://doi.org/10.1016/S0045-6535(00)00385-4
  12. Li, H., Wan, J., Ma, Y., Huang, M., Wang, Y., and Chen, Y., 2014a, New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions, Chem. Eng. J., 250, 137-147. https://doi.org/10.1016/j.cej.2014.03.092
  13. Li, H., Wan, J., Ma, Y., Wang, Y., and Huang, M., 2014b, Influence of particle size of zero-valent iron and dissolved silica on the reactivity of activated persulfate for degradation of acid orange 7, Chem. Eng. J., 237, 487-496. https://doi.org/10.1016/j.cej.2013.10.035
  14. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004a, Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55(9), 1213-1223. https://doi.org/10.1016/j.chemosphere.2004.01.029
  15. Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004b, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55(9), 1225-1233. https://doi.org/10.1016/j.chemosphere.2004.01.030
  16. Liang, C. and Guo, Y., 2010, Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate, Environ. Sci. Technol., 44(21), 8203-8208. https://doi.org/10.1021/es903411a
  17. Liang, C., Liang, C., and Chen, C., 2009, pH dependence of persulfate activation by EDTA/Fe (III) for degradation of trichloroethylene, J. Contam. Hydrol., 106(3), 173-182. https://doi.org/10.1016/j.jconhyd.2009.02.008
  18. Lin, H., Wu, J., and Zhang, H., 2013, Degradation of bisphenol A in aqueous solution by a novel electro/Fe3/peroxydisulfate process, Sep. Purif. Technol., 117, 18-23. https://doi.org/10.1016/j.seppur.2013.04.026
  19. Liu, H., Bruton, T.A., Doyle, F.M., and Sedlak, D.L., 2014, In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe (III)-and Mn (IV)-containing oxides and aquifer materials, Environ. Sci. Technol., 48(17), 10330-10336. https://doi.org/10.1021/es502056d
  20. Lu, X., Li, M., Tang, C., Feng, C., and Liu, X., 2012, Electrochemical depassivation for recovering Fe 0 reactivity by Cr (VI) removal with a permeable reactive barrier system, J. Hazard. Mater., 213, 355-360.
  21. Mao, R., Zhao, X., and Qu, J., 2014, Electrochemical reduction of bromate by a Pd modified carbon fiber electrode: kinetics and mechanism, Electrochim. Acta, 132, 151-157. https://doi.org/10.1016/j.electacta.2014.03.170
  22. Oh, S., Kang, S., and Chiu, P.C., 2010, Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron, Sci. Total Environ., 408(16), 3464-3468. https://doi.org/10.1016/j.scitotenv.2010.04.032
  23. Oturan, N., Wu, J., Zhang, H., Sharma, V.K., and Oturan, M.A., 2013, Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials, Appl. Catal., B-Environ., 140, 92-97.
  24. Petri, B.G., Watts, R.J., Tsitonaki, A., Crimi, M., Thomson, N.R., and Teel, A.L., 2011, Fundamentals of ISCO using persulfate, In: Siegrist R.L., Crimi M., Simpkin T.J.(ed), In Situ Chemical Oxidation for Groundwater Remediation, Springer, United States, p.147-191.
  25. Rodriguez, S., Vasquez, L., Romero, A., and Santos, A., 2014, Dye oxidation in aqueous phase by using zero-valent iron as persulfate activator: kinetic model and effect of particle size, Ind. Eng. Chem. Res., 53(31), 12288-12294. https://doi.org/10.1021/ie501632e
  26. Serrano, K., Michaud, P., Comninellis, C., and Savall, A., 2002, Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes, Electrochim. Acta, 48(4), 431-436. https://doi.org/10.1016/S0013-4686(02)00688-6
  27. Song, H. and Carraway, E.R., 2005, Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions, Environ. Sci. Technol., 39(16), 6237-6245. https://doi.org/10.1021/es048262e
  28. Sopaj F., Rodrigo M.A., Oturan N., Podvorica F.I., Pinson J., and Oturan M.A., 2015, Influence of the anode materials on the electrochemical oxidation efficiency. application to oxidative degradation of the pharmaceutical amoxicillin, Chem Eng J., 262, 286-294. https://doi.org/10.1016/j.cej.2014.09.100
  29. Wac awek, S., Antos, V., Hrabak, P., ernik, M., and Elliott, D., 2016, Remediation of hexachlorocyclohexanes by electrochemically activated persulfates, Environ. Sci. Pollut. R., 23(1), 765-773. https://doi.org/10.1007/s11356-015-5312-y
  30. Waldemer, R.H., Tratnyek, P.G., Johnson, R.L., and Nurmi, J.T., 2007, Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products, Environ. Sci. Technol., 41(3), 1010-1015. https://doi.org/10.1021/es062237m
  31. Wu, J., Zhang, H., and Qiu, J., 2012, Degradation of Acid Orange 7 in aqueous solution by a novel electro/Fe2/peroxydisulfate process, J. Hazard. Mater., 215, 138-145.
  32. Yuan, S., Liao, P., and Alshawabkeh, A.N., 2013, Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater, Environ. Sci. Technol., 48(1), 656-663. https://doi.org/10.1021/es404535q