• Title/Summary/Keyword: Persulfate

Search Result 165, Processing Time 0.027 seconds

The Effects of Reaction Conditions and NOM on Persulfate Oxidation of RDX (Persulfate에 의한 RDX 산화시 반응조건과 NOM의 영향)

  • Wu, Dabo;Bae, Bum-Han
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.723-730
    • /
    • 2011
  • In this experiment, persulfate, a strong oxidant for ISCO (In-Situ Chemical Oxidation) was used to degraded RDX in artificial ground water at ambient temperature. Results of RDX degradation by persulfate in a batch reactor showed that the oxidation reaction was pseudo first order with estimated Ea (activation energy) of $1.14{\times}10^2kJ/mol$ and the rate was increased with the increase of reaction temperature. The oxidation of RDX by persulfate increased slightly with the increase of initial solution pH from 4 to 8. The RDX oxidation rate increased 13 times at pH 10 compared with that at pH 4, however, alkaline hydrolysis was found to be the main reaction of RDX degradation rather than oxidation. The study also showed that the oxidation rate of RDX by persulfate was linearly dependent upon the molar ratios of persulfate to RDX from 5 : 1 up to 100 : 1, with a proportion constant of $4{\times}10^{-4}$ ($min^{-1}$/molar ratio) at $70^{\circ}C$. While NOM (Natural Organic Matter) exerted negative effects on the oxidation rate of RDX by persulfate, with a proportion constant of $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$) at $70^{\circ}C$ and persulfate/NOM molar ratio of 10/1. The decrease in RDX oxidation rate was linearly dependent upon the added NOM concentration. However, the estimated activation energy in the presence of 20 mg-NOM/L was within 3.3% error compared to that without NOM, which implies the addition of NOM does not alter intrinsic oxidation reaction.

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

Control of Persulfate Activation Rate and Improvement of Active Species Transfer Rate Using Selenium-modified ZVI (셀레늄으로 개질된 영가철을 이용한 과황산 활성화 속도 조절 및 활성종 전달율 향상에 관한 연구)

  • Hee-won Kwon;Hae-Seong Park;In-seong Hwang;Jeong-Jin Kim;Young-Hun Kim
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.57-65
    • /
    • 2023
  • The advanced oxidation treatment using persulfate and zero-valent iron (ZVI) has been evaluated as a very effective technology for remediation of soil and groundwater contamination. However, the high rate of the initial reaction of persulfate with ZVI causes over-consumption of an injected persulfate, and the excessively generated active species show a low transfer rate to the target pollutant. In this study, ZVI was modified using selenium with very low reactivity in the water environment with the aim of controlling the persulfate activation rate by controlling the reactivity of ZVI. Selenium-modified ZVI (Se/ZVI) was confirmed to have a selenium coating on the surface through SEM/EDS analysis, and low reductive reactivity to trichlroethylene (TCE) was observed. As a result of inducing the persulfate activation using the synthesized Se/ZVI, the persulfated consumption rate was greatly reduced, and the decomposition rate of the model contaminant, anisole, was also reduced in proportion. However, the final decomposition efficiency was rather increased, which seems to be the result of preventing persulfate over-consumption. This is because the transfer efficiency of the active species (SO4-∙) of persulfate to the target contaminant has been improved. Selenium on the surface of Se/ZVI was not significantly dissolved even under oxidation conditions by persulfate, and most of it was present in the form of Se/ZVI. It was confirmed that the persulfate activation rate could be controlled by controlling the reactivity of ZVI, which could greatly contribute to the improvement of the persulfate oxidation efficiency.

A Study on Persulfate Oxidation to Remove Chlorinated Solvents (TCE/PCE) (과황산(persulfate) 산화반응을 이용한 염소계 화합물(TCE, PCE) 분해에 관한 연구)

  • Song, Kyoung-Ho;Do, Si-Hyun;Lee, Hong-Kyun;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.549-556
    • /
    • 2009
  • In situ chemical oxidations (ISCO) are technologies for destruction of many contaminants in soil and groundwater, and persulfate has been recently studied as an alternative ISCO oxidant. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were chosen for target organic compounds. The objective of this study is to demonstrate the influence of initial pH (3, 6, 9, 12), oxidant concentrations (0.01, 0.05, 0.1, 0.3, 0.5 M), and contaminants concentrations (10, 30, 50, 70, 100 mg/L) on TCE/PCE degradation by persulfate oxidation. The maximum TCE/PCE degradation occurred at pH 3, and the removal efficiencies with this pH condition were 93.2 and 89.3%, respectively. The minimum TCE/PCE degradation occurred at pH 12, and the removal efficiencies were 55.0 and 31.2%, respectively. This indicated that degradation of TCE/PCE decreased with increasing the initial pH of solution. Degradation of TCE/PCE increased with increasing the concentration of persulfate and with decreasing the concentration of contaminants (TCE/PCE). The optimum conditions for TCE/PCE degradation were pH 3, 0.5 M of persulfate solution, and 10 mg/L of contaminant concentration. At these conditions, the first-order rate constants ($k_{obs}$) for TCE and PCE were 1.04 and 1.31 $h^{-1}$, respectively.

Oxidation of Chloroethenes by Heat-Activated Persulfate (과황산의 열적활성화 및 염소계용제의 산화분해)

  • Zhang, Hailong;Kwon, Hee-Won;Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1201-1208
    • /
    • 2017
  • Oxidative degradation of chlorinated ethenes was carried out using heat-activated persulfate. The activation rate of persulfate was dependent on the temperature and the activation reaction rate could be explained based on the Arrhenius equation. The activation energy of persulfate was 19.3 kcal/mol under the assumption that the reaction between the sulfate radical and tricholoroethene (TCE) is very fast. Activation could be achieved at a moderate temperature, so that the adverse effects due to high temperature in the soil environment were mitigated. The reaction rate of TCE was directly proportional to the concentration of persulfate, indicating that the remediation rate can be controlled by the concentration of the injected persulfate. The solution was acidized after the oxidation, and this was dependent on the oxidation temperature. The consumption rate of persulfate was high in the presence of the target organic, but the self-decomposition rate became very low as the target was completely removed.

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Removal of 2,4-D by an Fe(II)/persulfate/Electrochemical Oxidation Process (Fe(II)/과황산/전기화학적 산화 공정에 의한 2,4-D의 제거)

  • Hyun, Young Hwan;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.45-53
    • /
    • 2021
  • The removal of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution by coupled electro-oxidation and Fe(II) activated persulfate oxidation process was investigated. The electrochemical oxidation was performed using carbon sheet electrode and persulfate using Fe(II) ion as an activator. The oxidation efficiency was investigated by varying current density (2 - 10 mA/㎠), electrolyte (Na2SO4) concentration (10 - 100 mM), persulfate concentration (5 - 20 mM), and Fe(II) concentration (10 - 20 mM). The 2,4-D removal efficiency was in the order of Fe(II) activated persulfate-assisted electrochemical oxidation (Fe(II)/PS/ECO, 91%) > persulfate-electrochemical oxidation (PS/ECO, 51%) > electro-oxidation (EO, 36%). The persulfate can be activated by electron transfer in PS/ECO system, however, the addition of Fe(II) as an activator enhanced 2,4-D degradation in the Fe(II)/PS/ECO system. The 2,4-D removal efficiency was not affected by the initial pHs (3 - 9). The presence of anions (Cl- and HCO3-) inhibited the 2,4-D removal in Fe(II)/PS/ECO system due to scavenging of sulfate radical. Scavenger experiment using tert-butyl alcohol (TBA) and methanol (MeOH) confirmed that although both sulfate (SO4•-) and hydroxyl (•OH) radicals existed in Fe(II)/PS/ECO system, hydroxyl radical (SO4•-) was the predominant radical.

Comparison of a Cation Exchange Membrane and a Ceramic Membrane in Electrosynthesis of Ammonium Persulfate by a Pilot Experimental Study

  • Zhou, Junbo;Wang, Chao;Guo, Yujing;Gao, Liping
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.115-122
    • /
    • 2019
  • In order to improve the current efficiency and reduce the energy consumption in the electrosynthesis of ammonium persulfate, electrolytic properties of a perfluorosulfonic cation exchange membrane named PGN membrane and the $Al_2O_3$ ceramic membrane in the electrosynthesis of ammonium persulfate were studied and compared in a pilot electrolytic cell using a welded platinum titanium as the anode and a Pb-Sb alloy as the cathode. The effect of cell voltage, electrolyte flow rate and electrolysis time of the electrolytes on the current efficiency and the energy consumption were studied. The results indicated that the PGN membrane could improve current efficiency to 95.12% and reduce energy consumption to $1110kWh\;t^{-1}$ (energy consumption per ton of the ammonium persulfate generated) under the optimal operating conditions and the highest current efficiency of the $Al_2O_3$ ceramic membrane was 72.61% with its lowest energy consumption of $1779kWh\;t^{-1}$. Among 5 times of the electrolysis of the electrolytes, the lowest current efficiency of the PGN membrane was 85.25% with the highest energy consumption of $1244kWh\;t^{-1}$ while the lowest current efficiency of the $Al_2O_3$ ceramic membrane was 67.44% with the highest energy consumption of $1915kWh\;t^{-1}$, which suggested the PGN membrane could be used in the 5-stage electrolytic cell for the industrially continuous electrosynthesis of ammonium persulfate. Therefore the PGN membrane can be efficient to improve the current efficiency and reduce the energy consumption and can be applied in the industrial electrosynthesis of ammonium persulfate.

Temperature Effects on the Persulfate Oxidation of Low Volatile Organic Compounds in Fine Soils (과황산나트륨 산화에 의한 토양내 저휘발성 유기오염물 제거 시 온도의 영향 평가)

  • Jeong, Kwon;Kim, Do-Gun;Han, Dai-Sung;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.7-14
    • /
    • 2012
  • Batch tests were carried out to evaluate the thermal treatment of low volatile organic compounds in low-permeability soil. The chemical oxidation by sodium persulfate catalyzed by heat and Fe (II) was evaluated. Enhanced persulfate oxidation of n-decane (C-10), n-dodecane (C-12), n-tetradecane (C-14), n-hexadecane (C-16), and phenanthrene was observed with thermal catalyst, indicating increased sulfate radical production. Slight enhancement of the pollutants oxidation was observed when initial sodium persulfate concentration increased from 5 to 50 g/L. However, the removal efficiency greatly decreased as soil/water ratio increased. It indicates that mass transfer of the pollutants as well as the contact between the pollutants and sulfate radical were inhibited in the presence of solids. In addition, more pollutants can be adsorbed on soil particles and soil oxidant demand increased when soil/water ratio becomes higher. The oxidation of the pollutants was significantly improved when catalyzed by Fe(II). The sodium persulfate consumption increased at the same time because the residual Fe(II) acts as the sulfate radical scavenger.

Evaluation of Affecting Factors on the Ferrous Catalyzed Sodium Persulfate Oxidation for the Destruction of Organic Pollutant (과황산나트륨을 이용한 유기 오염물 산화와 영향인자 평가)

  • Yun, Yeobog;Park, Haimi;Ko, Sunghwan;Ko, Seokoh
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.151-158
    • /
    • 2009
  • The objective of this study was to determine on optimum ratio of oxidant and catalyst and to evaluate affecting factors such as anions and cations on persulfate oxidation of organic pollutant. Fe(II) activated the persulfate anion to produce a sulfate free radicals and thus effectively used to degrade the target organic pollutant in aqueous system. The chloride ions reacted with sulfate radical produced the $Cl^{\cdot}$ atom and had positive effects on the oxidation of organic pollutant at the initial stage. However, it was observed that chloride ions had the scavenging effects on the rate of oxidation of organic pollutant. Cations and some heavy metals were partly able to activate the persulfate anion to generate a sulfate free radical. However, high levels of cations inhibited the oxidation of organic pollutant.