DOI QR코드

DOI QR Code

Electrochemical Oxidation of Ethanol at Nickel Hydroxide Electrodes in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim, Jae-Woo (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology) ;
  • Park, Su-Moon (Department of Chemistry and Center for Integrated Molecular Systems, Pohang University of Science and Technology)
  • Published : 2005.08.01

Abstract

Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of $Ni(OH)_2$ to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the $\beta-Ni(OH)_2/\beta-NiOOH$ redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.

Keywords

References

  1. M. Fleischmann, K. Korinek, and D. Pletcher, J. Chem. Soc. Perkin II, 1396 (1972)
  2. H. Bode, K. Delhmelt, and J. Whitte, 'Zur kenntnis der nickelhydroxidelektrode? I. Uber das nickel (Il)-hydroxidhydrat', Electrochim. Acta, 11, 1079 (1966) https://doi.org/10.1016/0013-4686(66)80045-2
  3. D. M. MacArthur, J. Electrochem. Soc., 117, 422 (1970) https://doi.org/10.1149/1.2407535
  4. R. S. Schrebler Guzman, J. R. Vilche, and A. J. Arvia, J. Electrochem. Soc., 125, 1578 (1978) https://doi.org/10.1149/1.2131247
  5. R. Barnard and C. F. Randell, J. Appl. Electrochem., 13, 89 (1983) https://doi.org/10.1007/BF00615892
  6. R. Barnard and C. F. Randell, J. Appl. Electrochem., 13, 97 (1983) https://doi.org/10.1007/BF00615893
  7. C. Zhang and S.-M. Park, 'The anodic oxidation of nickel in alkaline media studied by spectroelectrochemical techniques', J. Electrochem. Soc., 134, 2966 (1987) https://doi.org/10.1149/1.2100324
  8. C. Zhang and S.-M. Park, 'In-situ spectroelectrochemical studies on the anodic oxidation of nickel hydroxide in alkaline media', J. Electrochem. Soc., 136, 3333 (1989) https://doi.org/10.1149/1.2096447
  9. J. McBreen, W. E. O'Grady, G Tourillon, E. Dartyge, A. Fontaine, and K. I. Pandya, 'In situ time-resolved x-ray absorption near edge structure study of the nickel oxide electrode', J. Phys. Chem., 93, 6308 (1989) https://doi.org/10.1021/j100354a010
  10. K. I. Pandya, W. E. O'Grady, D. A. Corrigan, J. McBreen, and R. W. Hoffinan, 'Extended x-ray absorption fine structure investigations of nickel hydroxides', J. Phys. Chem., 94, 21 (1990) https://doi.org/10.1021/j100364a005
  11. K. I. Pandya, R. W. Hoffinan, J. McBreen, and W. E. O'Grady, J. Electrochem. Soc., 137, 383 (1990) https://doi.org/10.1149/1.2086450
  12. D. Guay, G. Tourillon, E. Dartyge, A. Fontaine, J. McBreen, K. I. Pandya, and W. E. O'Grady, 'In-situ time-resolved EXAFS study of the structural modifications occurring in nickel oxide electrodes between their fully oxidized and reduced states', J. Electroanal. Chem., 305, 83 (1991) https://doi.org/10.1016/0022-0728(91)85204-3
  13. X. Qian, H. Sarnbe, D. E. Rarnaker, K. I. Pandya, and W. E. O'Grady, J. Phys. Chem., 101, 9441 (1997) https://doi.org/10.1021/jp970435h
  14. S. H. Glarurn and J. H. Marshall, J. Electrochem. Soc., 129, 535 (1982) https://doi.org/10.1149/1.2123895
  15. S. J. Lenhart, D. D. Macdonald, and B. G Pound, J. Electrochem. Soc., 135, 1063 (1988) https://doi.org/10.1149/1.2095875
  16. A. Gorenstein, F. Decker, W. Estrada, C. Esteves, A. Andersson, S. Passerini, S. Pantaloni, and B. Scrosati, 'Electrochromic NiOxHy, hydrated films: cyclic voltammetry and ac impedance spectroscopy in aqueous electrolyte', J. Electroanal. Chem., 277, 277 (1990) https://doi.org/10.1016/0022-0728(90)85107-G
  17. S. D. Bhakta, D. D. Macdonald, B. G Pound, and M. Urquidi-Macdonald, J. Electrochem. Soc., 138, 1353 (1991) https://doi.org/10.1149/1.2085785
  18. D. D. Macdonald, M. Urquidi-Macdonald, S. D. Bhakta, and B. G Pound, J. Electrochem. Soc., 138, 1359 (1991) https://doi.org/10.1149/1.2085786
  19. M. A. Reid and P. L. Loyselle, 'Impedances of nickel electrodes cycled in various KOH concentrations', J. Power Sources, 36, 285 (1991) https://doi.org/10.1016/0378-7753(91)87008-Y
  20. M. S. Suresh, 'Double-layer impedance of a nickel oxide electrode at low states-of-charge', J. Power Sources, 47, 27 (1994) https://doi.org/10.1016/0378-7753(94)80047-2
  21. M. Cappadonia, J. Divisek, T. von der Heyden, and U. Stimming, 'Oxygen evolution at nickel anodes in concentrated alkaline solution', Electrochim. Acta, 39, 1559 (1994) https://doi.org/10.1016/0013-4686(94)85135-2
  22. G Barral, F. Njanjo-Eyoke, and S. Maximovitch, 'Characterisation of the passive layer and of hydroxide deposits of nickel by impedance spectroscopy', Electrochim. Acta, 40, 2815 (1995) https://doi.org/10.1016/0013-4686(95)00274-I
  23. V. Mancier, A. Metrot, and P. Willmann, 'Ac impedance modelling of nickel hydroxide electrodes viewed as mixed protonic-electronic conductors', Electrochim. Acta, 41, 1259 (1996) https://doi.org/10.1016/0013-4686(95)00446-7
  24. G Barral, S. Maximovitch, and F. Njanjo-Eyoke, 'Study of electrochemically formed $Ni(OH)_2$ layers by EIS', Electrochim. Acta, 41, 1305 (1996) https://doi.org/10.1016/0013-4686(95)00451-3
  25. S. Maximovitch, 'Influence of formation conditions on impedance properties of nickel passive layers formed in 1 M KOH', Electrochim. Acta, 41, 2761 (1996) https://doi.org/10.1016/0013-4686(96)00135-1
  26. C. Y. Chao, L. F. Lin, and D. D. Macdonald, J. Electrochem. Soc., 128, 1187 (1981) https://doi.org/10.1149/1.2127591
  27. L. F. Lin, C. Y. Chao, and D. D. Macdonald, J. Electrochem. Soc., 128, 1194 (1981) https://doi.org/10.1149/1.2127592
  28. C. Y. Chao, L. F. Lin, and D. D. Macdonald, J. Electrochem. Soc., 129, 1874 (1982) https://doi.org/10.1149/1.2124318
  29. J.-W. Kim and S.-M. Park, 'Electrochemical Oxidation of Ethanol at Thermally Prepared $RuO_2$-Modified Electrodes in Alkaline Media', J. Electrochem. Soc., 146, 1075 (1999) https://doi.org/10.1149/1.1391723
  30. B. A. Boukamp, Equivalent Circuit User 's Manual, 2nd ed., University of Twente, Enschede, the Netherlands (1989)
  31. B. J. Johnson and S.-M. Park, 'Electrochemistry of Conductive Polymer XIX. Oxidation of Aniline at Bare and PolyanilineModified Platinum Electrodes Studied by Electrochemical Impedance Spectroscopy', J. Electrochem. Soc., 143, 1269 (1996) https://doi.org/10.1149/1.1836628
  32. M. Cai and S.-M. Park, 'Spectroelectrochemical studies on dissolution and passivation of zinc electrodes in alkaline solutions', J. Electrochem. Soc., 143, 2125 (1996) https://doi.org/10.1149/1.1836970
  33. D. K. Cha and S.-M. Park, 'Electrochemical Oxidation of Mn(OH)2 in Alkaline Media', J. Electrochem. Soc., 144, 2573 (1997) https://doi.org/10.1149/1.1837867
  34. S.-M. Park and J.-S. Yoo, 'Electrochemical impedance spectroscopy for better electrochemical measurements', Anal. Chem. 75, 455A (2003)
  35. A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley & Sons, Inc. (1980)
  36. P. W. T. Lu and S. Srinivasan, J. Electrochem. Soc., 125, 1416 (1978) https://doi.org/10.1149/1.2131689
  37. Y. L. Lo and B. J. Hwang, J. Electrochem. Soc., 142,445 (1995) https://doi.org/10.1149/1.2044058
  38. L. W. H. Leung, S. C. Chang, and M. J. Weaver, J. Electroanal. Chem., 266, 317 (1989) https://doi.org/10.1016/0022-0728(89)85078-8
  39. P. Gao, S. C. Chang, Z. Zhou, and M. J. Weaver, 'Electrooxidation pathways of simple alcohols at platinum in pure nonaqueous and concentrated aqueous environments as studied by real-time ftir spectroscopy', J. Electroanal. Chem., 272, 161 (1989) https://doi.org/10.1016/0022-0728(89)87077-9
  40. S.-M. Park, N. C. Chen, and N. Doddapaneni, 'Electrochemical oxidation of ethanol in aqueous carbonate solutions', J. Electrochem. Soc., 142, 40 (1995) https://doi.org/10.1149/1.2043925
  41. J.-W. Kim and S.-M. Park, 'In-situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol', J. Electrochem. Soc., 150, E560 (2003) https://doi.org/10.1149/1.1613671
  42. K. P. Ta and J. Newman, 'Mass Transfer and Kinetic Phenomena at the Nickel Hydroxide Electrode', J. Electrochem. Soc., 145, 3860 (1998) https://doi.org/10.1149/1.1838886
  43. S. Motupally, C. C. Streinz, and J. W. Weidner, J. Electrochem. Soc., 142, 1401 (1995) https://doi.org/10.1149/1.2048589
  44. R. D. Armstrong, 'Impedance plane display for an electrode with diffusion restricted to a thin layer', J. Electroanal. Chem., 198, 177 (1986) https://doi.org/10.1016/0022-0728(86)90034-3
  45. M. F. Mathias and O. Haas, 'An alternating current impedance model including migration and redox-site interactions at polymer-modified electrodes', J. Phys. Chem., 96, 3174 (1992) https://doi.org/10.1021/j100186a073
  46. G Vertes and G Horanyi, 'Some problems of the kinetics of the oxidation of organic compounds at oxide-covered nickel electrodes', J. Electroanal. Chem., 52, 47 (1974) https://doi.org/10.1016/S0022-0728(74)80100-2

Cited by

  1. Ethanol electrooxidation in alkaline medium on electrochemically synthesized Co(OH)2/Au composite vol.4, pp.1, 2017, https://doi.org/10.1088/2053-1591/aa5665
  2. Fabrication of nickel nanoparticles modified electrode by reverse microemulsion method and its application in electrolytic oxidation of ethanol vol.405, 2012, https://doi.org/10.1016/j.colsurfa.2012.04.022
  3. Electrodeposited Ni–Cr2O3 nanocomposite anodes for ethanol electrooxidation vol.36, pp.8, 2011, https://doi.org/10.1016/j.ijhydene.2011.01.024
  4. Novel MWCNT interconnected NiCo 2 O 4 aerogels prepared by a supercritical CO 2 drying method for ethanol electrooxidation in alkaline media vol.41, pp.31, 2016, https://doi.org/10.1016/j.ijhydene.2016.05.175
  5. Nickel-dimethylglyoxime complex modified graphite and carbon paste electrodes: preparation and catalytic activity towards methanol/ethanol oxidation vol.39, pp.1, 2009, https://doi.org/10.1007/s10800-008-9636-x
  6. Atomic-force microscopy of nickel nanoparticles possessing electrocatalytic properties vol.83, pp.10, 2010, https://doi.org/10.1134/S1070427210100058
  7. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells vol.325, 2016, https://doi.org/10.1016/j.jpowsour.2016.06.088
  8. Enhancement of Ethanol Oxidation Reaction on Pt (PtSn)-Activated Nickel Foam Through In situ Formation of Nickel Oxy-Hydroxide Layer vol.8, pp.3, 2017, https://doi.org/10.1007/s12678-017-0362-1
  9. A Kinetic Investigation of Ethanol Oxidation on a Nickel Oxyhydroxide Electrode vol.3, pp.1, 2012, https://doi.org/10.5229/JECST.2012.3.1.50
  10. Platinum dissolution and ethanol oxidation reaction on Pt-activated nickel foam in sodium hydroxide solution vol.19, pp.3, 2017, https://doi.org/10.1515/pjct-2017-0046
  11. On the significance of hydroxide ion in the electro-oxidation of methanol on Ni vol.650, pp.2, 2011, https://doi.org/10.1016/j.jelechem.2010.10.003
  12. Trends in Catalysis and Catalyst Cost Effectiveness for N2H4 Fuel Cells and Sensors: a Rotating Disk Electrode (RDE) Study vol.120, pp.9, 2016, https://doi.org/10.1021/acs.jpcc.5b10156
  13. Ethanol electro-oxidation reaction using a polycrystalline nickel electrode in alkaline media: Temperature influence and reaction mechanism vol.746, 2015, https://doi.org/10.1016/j.jelechem.2015.03.024
  14. Development of TiO2-supported RuO2 composite-incorporated Ni–P electrodes for amperometric measurement of ethanol vol.129, pp.1, 2008, https://doi.org/10.1016/j.snb.2007.07.121
  15. Ultrathin layered double hydroxide nanosheets with Ni(III) active species obtained by exfoliation for highly efficient ethanol electrooxidation vol.260, 2018, https://doi.org/10.1016/j.electacta.2017.12.065