• 제목/요약/키워드: Electrochemical immunosensor

검색결과 20건 처리시간 0.023초

Simple Electrochemical Immunosensor for the Detection of Hippuric Acid on the Screen-printed Carbon Electrode Modified Gold Nanoparticles

  • Choi, Young-Bong;Tae, Gun-Sik
    • 전기화학회지
    • /
    • 제14권1호
    • /
    • pp.44-49
    • /
    • 2011
  • This paper describes an electrochemical immunosensor for simple, fast and quantitative detection of a urinary hippuric acid which is one of major biological indicator in toluene-exposed humans. The feature of this electrochemical system for immunoassay of hippuric acid is based on the direct conjugation of ferrocene to a hippuric acid. With the competition between the ferrocene-hippuric acid complex and hippuric acid for binding to the anti-hippuric acid monoclonal antibody coated onto gold nanoparticles, the electrical signals are turned out to be proportional to urinary hippuric acid in the range of 0.01-10 mg/mL, which is enough to be used for the point-of-care. The proposed electrochemical method could extend its applications to detect a wide range of different small molecules of antigens in the health care area.

Application of Polyaniline to an Enzyme-Amplified Electrochemical Immunosensor as an Electroactive Report Molecule

  • Kwon, Seong-Jung;Seo, Myung-Eun;Yang, Hae-Sik;Kim, Sang-Youl;Kwak, Ju-Hyoun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3103-3108
    • /
    • 2010
  • Conducting polymers (CPs) are widely used as matrixes for the entrapment of enzymes in analytical chemistry and biosensing devices. However, enzyme-catalyzed polymerization of CPs is rarely used for immunosensing due to the difficulties involved in the quantitative analysis of colloidal CPs in solution phase. In this study, an enzyme-amplified electrocatalytic immunosensor employing a CP as a redox marker has been developed. A polyanionic polymer matrix, $\alpha$-amino-$\omega$-thiol terminated poly(acrylic acid), was employed for precipitation of CP. The acrylic acid group acts as a polyanionic template. The thiol terminus of the polymer was used to produce self-assembled monolayers (SAMs) on Au electrodes and the amine terminus was employed for immobilization of biomolecules. In an enzymeamplified sandwich type immunosensor, the polyaniline (PANI) produced enzymatically is attracted by the electrostatic force of the matrix polymer. The precipitated PANI was characterized by electrochemical methods.

Electrochemical Immunosensor Using the Modification of an Amine-functionalized Indium Tin Oxide Electrode with Carboxylated Single-walled Carbon Nanotubes

  • Aziz, Md.Abdul;Yang, Hae-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권7호
    • /
    • pp.1171-1174
    • /
    • 2007
  • We have developed an electrochemical immunosensor that combines the electrocatalytic property of carbon nanotube and the low background current of indium tin oxide (ITO) electrode. A partial monolayer of carboxylated single-walled carbon nanotube (CCNT) is covalently formed on an ITO electrode modified with amine-terminated phosphonic acid. Nonspecifically adsorbed avidin on the hydrophobic sidewalls of CCNT is used to immobilize biotinylated antibody and to reduce the nonspecific binding to CCNT. The biotinylated antimouse IgG bound on avidin and the antimouse IgG conjugated with alkaline phosphatase (ALP) sandwiches a target mouse IgG. ALP catalyzes the conversion of p-aminophenyl phosphate monohydrate into p-aminophenol, which is electrocatalytically oxidized to p-quinone imine on CCNT surface. Moderate electrocatalytic electrode obtained with the combination of CCNT and ITO allows low detection limit (0.1 ng/ mL).

Simple Electrochemical Immunosensor for the Determination of Rabbit IgG Using Osmium Redox Polymer Films

  • Choi, Young-Bong;Lee, Seung-Hwa;Tae, Gun-Sik
    • 전기화학회지
    • /
    • 제10권3호
    • /
    • pp.229-232
    • /
    • 2007
  • An amperometric immunosensor for the determination of rabbit IgG is proposed. The immunoassay utilizes a screen-printed carbon electrode on which osmium redox polymer is electrodeposited. This immunoassay detects 0.1 ng/ml of rabbit IgG, which is ${\sim}10^2$ fold higher than the most sensitive enzyme amplified amperometric immunoassay. The assay utilizes a screen-printed carbon electrode which was pre-coated by a co-electrodeposited film of an electron conducting redox hydrogel and a rabbit IgG. The rabbit IgG in the electron conducting film conjugates captures, when present, the anti-rabbit IgG. The captured anti-rabbit-IgG is labeled with horseradish peroxidase (HRP) which catalyzes the two-electron reduction of $H_2O_2$ to water. Because the redox hydrogel electrically connects HRP reaction centers to the electrode, completion of the sandwich converts the film from non-electrocatalytic to electro-catalytic for the reduction of $H_2O_2$ to $H_2O$ when the electrode is poised at 200 mV vs. Ag/AgCl.

Simple and Sensitive Electrochemical Sandwich-type Immunosensing of Human Chorionic Gonadotropin based on b-cyclodextrin Functionalized Graphene

  • Linfen Xu;Ling liu;Xiaoyan Zhao;Jinyu Lin;Shaohan Xu;Jinlian He;Debin Jiang;Yong Xia
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권1호
    • /
    • pp.51-58
    • /
    • 2023
  • The effective detection of human chorionic gonadotropin (HCG) is considerably important for the clinical diagnosis of both of early pregnancy and nonpregnancy-related diseases. In this work, a simple and sensitive electrochemical sandwich-type immunosensing platform was designed by synthesizing b-cyclodextrin (CD) functionalized graphene (CD/GN) hybrid as simultaneously sensing platform and signal transducer coupled with rhodamine b (RhB) as probe. In brief, GN offers large surface area and high conductivity, while CD exhibits superior host-guest recognition capability, thus the primary antibody (Ab1) of HCG can be bound into the cavities of CD/GN to form stable Ab1/CD/GN inclusion complex; meanwhile, the secondary antibody (Ab2) and RhB can also enter into the cavities, producing RhB/Ab2/CD/GN complex. Then, by using Ab1/CD/GN as sensing platform and RhB/Ab2/CD/GN as signal transducer (in which RhB was signal probe), a simple sandwich-type immunosensor was constructed. Under the optimum parameters, the designed immunosensor exhibited a considerable low analytical detection of 1.0 pg mL-1 and a wide linearity of 0.002 to 10.0 ng mL-1 for HCG, revealing the developed sandwich-type electrochemical immunosensing platform offered potential real applications for the determination of HCG.

Fe3O4 나노분말을 이용한 전기화학적 비효소 면역센서 응답특성 (Response Characteristics of Electrochemical Non-enzyme Immunosensor using Fe3O4 Nanoparticle)

  • 김창규;이경자;엄영랑;이민구;이창규
    • 한국분말재료학회지
    • /
    • 제16권3호
    • /
    • pp.180-184
    • /
    • 2009
  • In this paper, the electrochemical non-enzyme immunosensor has been developed for the determination of salmonella antigen, using inverse voltammetry. For the estimation of salmonella antigen concentration, the $Fe_3O_4$ nanoparticles synthesized by microemulsion method were conjugated with salmonella antigen. Then, the immunocomplex between antibody immobilized on the transducer surface and antigen containing a magnetic nanoparticles was formed. From the linear relationship between the reduction peak current of Fe(III) and salmonella antigen concentration, it is suggested that the electrochemical non-enzyme biosensor is applicable to detect salmonella antigen in the concentration range of $10^1-10^5$ CFU/ml.

PDMS 채널 내부에 성장된 산화아연 나노막대를 이용한 H7N9 인플루엔자 바이러스 전기화학 면역센서 (Electrochemical Immunosensor Based on the ZnO Nanorods Inside PDMS Channel for H7N9 Influenza Virus Detection)

  • 한지훈;이동영;박정호
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.278-283
    • /
    • 2014
  • In this study, we propose an immunosensor using zinc oxide nanorods (NRs) inside PDMS channel for detecting the influenza A virus subtype H7N9. ZnO with high isoelectric point (IEP, ~9.5) makes it suitable for immobilizing proteins with low IEP. In this proposed H7N9 immunosensor structure ZnO NRs were grown on the PDMS channel inner surface to immobilize H7N9 capture antibody. A sandwich enzyme-linked immunosorbent assay (ELISA) method with was used 3,3',5,5' tetramethylbenzidine (TMB) for detecting H7N9 influenza virus. The immunosensor was evaluated by amperometry at various H7N9 influenza antigen concentrations (1 pg/ml - 1 ng/ml). The redox peak voltage and current were measured by amperometry with ZnO NWs and without ZnO NWs inside PDMS channel. The measurement results of the H7N9 immunosensor showed that oxidation peak current of TMB at 0.25 V logarithmically increased from 2.3 to 3.8 uA as the H7N9 influenza antigen concentration changed from 1 pg/ml to 1 ng/ml. And then we demonstrated that ZnO NRs inside PDMS channel can improve the sensitivity of immunosensor to compare non-ZnO NRs inside PDMS channel.