DOI QR코드

DOI QR Code

Electrochemical Immunosensor Based on the ZnO Nanorods Inside PDMS Channel for H7N9 Influenza Virus Detection

PDMS 채널 내부에 성장된 산화아연 나노막대를 이용한 H7N9 인플루엔자 바이러스 전기화학 면역센서

  • 한지훈 (고려대학교 전기전자공학과) ;
  • 이동영 (고려대학교 전기전자공학과) ;
  • 박정호 (고려대학교 전기전자공학과)
  • Received : 2014.06.20
  • Accepted : 2014.07.29
  • Published : 2014.07.31

Abstract

In this study, we propose an immunosensor using zinc oxide nanorods (NRs) inside PDMS channel for detecting the influenza A virus subtype H7N9. ZnO with high isoelectric point (IEP, ~9.5) makes it suitable for immobilizing proteins with low IEP. In this proposed H7N9 immunosensor structure ZnO NRs were grown on the PDMS channel inner surface to immobilize H7N9 capture antibody. A sandwich enzyme-linked immunosorbent assay (ELISA) method with was used 3,3',5,5' tetramethylbenzidine (TMB) for detecting H7N9 influenza virus. The immunosensor was evaluated by amperometry at various H7N9 influenza antigen concentrations (1 pg/ml - 1 ng/ml). The redox peak voltage and current were measured by amperometry with ZnO NWs and without ZnO NWs inside PDMS channel. The measurement results of the H7N9 immunosensor showed that oxidation peak current of TMB at 0.25 V logarithmically increased from 2.3 to 3.8 uA as the H7N9 influenza antigen concentration changed from 1 pg/ml to 1 ng/ml. And then we demonstrated that ZnO NRs inside PDMS channel can improve the sensitivity of immunosensor to compare non-ZnO NRs inside PDMS channel.

Keywords

References

  1. http://www.info.gov.hk/, "Notification of three human cases of H7N9 in Shanghai and Anhui" (retrieved on Mar. 31, 2013).
  2. http://www.who.int/, "Frequently asked questions on human infection with A(H7N9) avian influenza virus, China" (retrieved on Apr. 5, 2013).
  3. R. Gao, B. Cao, Y. Hu, Z. Feng, D. Wang, W. Hu, et al, "Human infection with a novel avian-origin influenza A (H7N9) virus", New England Journal of Medicine, Vol. 368, pp. 1888-1897, 2013. https://doi.org/10.1056/NEJMoa1304459
  4. Q. Li, L. Zhou, M. Zhou, Z. Chen, F. Li, H. Wu, N. Xiang, E. Chen, et al, "Preliminary Report: Epidemiology of the Avian Influenza A (H7N9) Outbreak in China", New England Journal of Medicine, Vol. 370, pp. 520-532, 2013.
  5. J. R. Caminade, E. Dueger, X. Dufrenot, N. Isoda, F. Konings, C. K. Lee, et al, "Human infections with avian influenza A (H7N9) virus in China: preliminary assessments of the age and sex distribution", update. Geneva, World Health Organization, 2013.
  6. K. Sato, M. Tokeshi, T. Odake, H. Kimura, T. Ooi, M. Nakao, and T. Kitamori, "Integration of an immunosorbent assay system: analysis of secretory human immunoglobulin A on polystyrene beads in a microchip", Analytical Chemistry, Vol. 72, pp. 1144-1147, 2000. https://doi.org/10.1021/ac991151r
  7. S. Xu, Y. Liu, T. Wang, and J. Li, "Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection", Analytical Chemistry, Vol. 83, pp. 3817-3823, 2011. https://doi.org/10.1021/ac200237j
  8. S. Qu, J. Liu, J. Luo, Y. Huang, W. Shi, B. Wang, and X. Cai, "A rapid and highly sensitive portable chemiluminescent immunosensor of carcinoembryonic antigen based on immunomagnetic separation in human serum", Analytica Chimica Acta, Vol. 766, pp. 94-99, 2013. https://doi.org/10.1016/j.aca.2012.12.043
  9. Y. T. Tseng, H. Y. Chang, and C. C. Huang, "A mass spectrometry-based immunosensor for bacteria using antibodyconjugated gold nanoparticles", Chemical Communications, Vol. 48, pp. 8712-8714, 2012. https://doi.org/10.1039/c2cc34120d
  10. A. Vasudev, A. Kaushik, and S. Bhansali, "Electrochemical immunosensor for label free epidermal growth factor receptor (EGFR) detection", Biosensors and Bioelectronics, Vol. 39, pp. 300-305, 2013. https://doi.org/10.1016/j.bios.2012.06.012
  11. Y. Wang, Y. Zhang, Y. Su, F. Li, H. Ma, H. Li, B. Du, and Q. Wei, "Ultrasensitive non-mediator electrochemical immunosensors using Au/Ag/Au core/double shell nanoparticles as enzyme-mimetic labels", Talanta, Vol. 124, pp. 60-66, 2014. https://doi.org/10.1016/j.talanta.2014.02.035
  12. S. K. Pasha, A. Kaushik, A. Vasudev, S. A. Snipes, and S. Bhansali, "Electrochemical immunosensing of saliva cortisol", Journal of The Electrochemical Society, Vol. 161, pp. B3077-B3082, 2014.
  13. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, "Biomimetic arrays of oriented helical ZnO nanorods and columns", Journal of the American Chemical Society, Vol. 124, pp. 12954-12955, 2002. https://doi.org/10.1021/ja0279545
  14. A. Degen and M. Kosec, "Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution", Journal of the European Ceramic Society, Vol. 20, pp. 667-673, 2000. https://doi.org/10.1016/S0955-2219(99)00203-4
  15. Z. Li, R. Yang, M. Yu, F. Bai, C. Ki, and Z. L. Wang, "Cellular level biocompatibility and biosafety of ZnO nanowires", Journal of Physical Chemistry C, Vol. 112, pp. 20114-20117, 2008. https://doi.org/10.1021/jp808878p
  16. Z. Zhao, W. Lei, X. Zhang, B. Wang, and H. Jiang, "ZnObased amperometric enzyme biosensors", Sensors, Vol. 10, pp. 1216-1231, 2010. https://doi.org/10.3390/s100201216
  17. H. C. Hsu, Y. K. Tseng, H. M. Cheng, J. H. Kuo, and W. F. Gsieh, "Selective growth of ZnO nanorods on pre-coated ZnO buffer layer", Journal of Crystal Growth, Vol. 261, pp. 520-525, 2004. https://doi.org/10.1016/j.jcrysgro.2003.09.040
  18. T. Ma, M. Guo, M. Zhang, Y. Zhang, and X. Wang, "Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays", Nanotechnology, Vol. 18, 2007.
  19. F. Ricci, G. Adornetto, and G. Palleschi, "A review of experimental aspects of electrochemical immunosensors", Electrochimica Acta, Vol. 84, pp. 74-83, 2012. https://doi.org/10.1016/j.electacta.2012.06.033