DOI QR코드

DOI QR Code

Simple and Sensitive Electrochemical Sandwich-type Immunosensing of Human Chorionic Gonadotropin based on b-cyclodextrin Functionalized Graphene

  • Linfen Xu (Department of Gynaecology, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University) ;
  • Ling liu (Department of reproduction, Fuzhou Maternity and Child Health care Hospital) ;
  • Xiaoyan Zhao (Department of Clinical Laboratory, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University) ;
  • Jinyu Lin (Department of family planning, Fuzhou Maternity and Child Health care Hospital) ;
  • Shaohan Xu (Clinical lab, Fuzhou Maternity and Child Health care Hospital) ;
  • Jinlian He (Department of Obstetrics and Gynecology, Fuzhou Maternity and Child Health care Hospital) ;
  • Debin Jiang (Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University) ;
  • Yong Xia (Department of Obstetrics and Gynecology, Fuzhou Maternity and Child Health care Hospital)
  • Received : 2022.07.16
  • Accepted : 2022.08.29
  • Published : 2023.02.28

Abstract

The effective detection of human chorionic gonadotropin (HCG) is considerably important for the clinical diagnosis of both of early pregnancy and nonpregnancy-related diseases. In this work, a simple and sensitive electrochemical sandwich-type immunosensing platform was designed by synthesizing b-cyclodextrin (CD) functionalized graphene (CD/GN) hybrid as simultaneously sensing platform and signal transducer coupled with rhodamine b (RhB) as probe. In brief, GN offers large surface area and high conductivity, while CD exhibits superior host-guest recognition capability, thus the primary antibody (Ab1) of HCG can be bound into the cavities of CD/GN to form stable Ab1/CD/GN inclusion complex; meanwhile, the secondary antibody (Ab2) and RhB can also enter into the cavities, producing RhB/Ab2/CD/GN complex. Then, by using Ab1/CD/GN as sensing platform and RhB/Ab2/CD/GN as signal transducer (in which RhB was signal probe), a simple sandwich-type immunosensor was constructed. Under the optimum parameters, the designed immunosensor exhibited a considerable low analytical detection of 1.0 pg mL-1 and a wide linearity of 0.002 to 10.0 ng mL-1 for HCG, revealing the developed sandwich-type electrochemical immunosensing platform offered potential real applications for the determination of HCG.

Keywords

Acknowledgement

The work was financially supported by Fuzhou health technology project (2019-S-wp7).

References

  1. H. Liang, G. Ning, L. Wang, C. Li, J. Zheng, J. Zeng, H. Zhao, and C.-P. Li, ACS Appl. Nano Mater., 2021, 4(5), 4593-4601. https://doi.org/10.1021/acsanm.1c00199
  2. E. Ozgur, K. E. Roberts, E. O. Ozgur, A. N. Gin, J. R. Bankhead, Z. Wang, and J. Su, Anal. Chem., 2019, 91(18), 11872-11878. https://doi.org/10.1021/acs.analchem.9b02630
  3. H. Li, T. Cai, Y. Ren, J. Huang, H. Jiang, Y. Hou, C. Tang, J. Yang, J. Zhao, and P. Yu, Anal. Methods, 2021, 13, 4442-4451. https://doi.org/10.1039/D1AY01105G
  4. Y. Lu, H. Wang, X.-M. Shi, C. Ding, and G.-C. Fan, Anal. Chim. Acta, 2022, 1199, 339560.
  5. D. Qin, X. Jiang, G. Mo, X. Zheng, and B. Deng, Microchim. Acta, 2020, 187, 482.
  6. G. Hong, D. Zhang, Y. He, Y. Yang, P. Chen, H. Yang, Z. Zhou, Y. Liu, and Y. Wang, Anal. Bioanal. Chem., 2019, 411, 6837-6845. https://doi.org/10.1007/s00216-019-02049-w
  7. Z. Zhang, G. Xu, L. Xie, and Y. Guan, Microchim. Acta, 2019, 186, 581.
  8. J. Camperi, A. Combes, T. Fournier, V. Pichon, and N. Delaunay, Anal. Bioanal. Chem., 2020, 412, 4423-4432. https://doi.org/10.1007/s00216-020-02684-8
  9. M. Dabrowski, A. Ziminska, J. Kalecki, M. Cieplak, W. Lisowski, R. Maksym, S. Shao, F. D'Souza, A. Kuhn, and P. S. Sharma, ACS Appl. Mater. Interfaces, 2019, 11(9), 9265-9276. https://doi.org/10.1021/acsami.8b17951
  10. M. Roushani and A. Valipour, Sens. Actuators B Chem., 2016, 222, 1103-1111. https://doi.org/10.1016/j.snb.2015.08.031
  11. D. Zhao, Y. Yu, and C. Xu, RSC Adv., 2016, 6, 87-93. https://doi.org/10.1039/C5RA24300A
  12. S. Khetani, V. Ozhukil Kollath, V. Kundra, M. D. Nguyen, C. Debert, A. Sen, K. Karan, and A. SanatiNezhad, ACS Sens., 2018, 3(4), 844-851. https://doi.org/10.1021/acssensors.8b00076
  13. Y. Yang, Q. Liu, Y. Liu, J. Cui, H. Liu, P. Wang, Y. Li, L. Chen, Z. Zhao, and Y. Dong, Biosens. Bioelectron., 2017, 90, 31-38. https://doi.org/10.1016/j.bios.2016.11.029
  14. H. Bhardwaj, M. K. Pandey, Rajesh, and G. Sumana, Microchim. Acta, 2019, 186, 592.
  15. H. Lee, T. K. Choi, Y. B. Lee, H. R. Cho, R. Ghaffari, L. Wang, H. J. Choi, T.D. Chung, N. Lu, T. Hyeon, S. H. Choi, and D.-H. Kim, Nature Nanotech., 2016, 11, 566-572. https://doi.org/10.1038/nnano.2016.38
  16. L. Wen, F. Li, and H.-M. Cheng, Adv. Mater., 2016, 28(22), 4306-4337. https://doi.org/10.1002/adma.201504225
  17. X. Guo, R. Cui, H. Huang, Y. Li, B. Liu, J. Wang, D. Zhao, J. Dong, and B. Sun, J. Electroanal. Chem., 2020, 871, 114323.
  18. M. A. Mohamed, S. A. Atty, H. A. Merey, T. A. Fattah, C. W. Foster, and C. E. Banks, Analyst, 2017, 142, 3674-3679. https://doi.org/10.1039/C7AN01101F
  19. Y. Yi, D. Zhang, Y. Ma, X. Wu, and G. Zhu, Anal. Chem., 2019, 91(4), 2908-2915. https://doi.org/10.1021/acs.analchem.8b05047
  20. V. B. C. Lee, N. F. Mohd-Naim, E. Tamiya, and M. U. Ahmed, Anal. Sci., 2018, 34(1), 7-18. https://doi.org/10.2116/analsci.34.7
  21. G. Zhu, Y. Yi, and J. Chen, TrAC-Trend. Anal. Chem., 2016, 80, 232-241. https://doi.org/10.1016/j.trac.2016.03.022
  22. Y. Liu, H. Ma, J. Gao, D. Wu, X. Ren, T. Yan, X. Pang, and Q. Wei, Biosens. Bioelectron., 2016, 79, 71-78. https://doi.org/10.1016/j.bios.2015.12.013
  23. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, and M. Ye, Chem. Mater., 2009, 21(15), 3514-3520. https://doi.org/10.1021/cm901247t
  24. V. Katic, P. L. dos Santos, M. F. dos Santos, B. M. Pires, H. C. Loureiro, A. P. Lima, J. C. M. Queiroz, R. Landers, R. A. A. Munoz, and J. A. Bonacin, ACS Appl. Mater. Interfaces, 2019, 11(38), 35068-35078. https://doi.org/10.1021/acsami.9b09305
  25. X. Tu, F. Gao, X. Ma, J. Zou, Y. Yu, M. Li, F. Qu, X. Huang, and L. Lu, J. Hazard. Mater., 2020, 396, 122776.
  26. A. U. Alam and M. J. Deen, Anal. Chem., 2020, 92(7), 5532-5539. https://doi.org/10.1021/acs.analchem.0c00402
  27. P. Zhao, M. Ni, Y. Xu, C. Wang, C. Chen, X. Zhang, C. Li, Y. Xie, and J. Fei, Sens. Actuators B Chem., 2019, 299, 126997.
  28. M. Rizwan, M. Hazmi, S. A. Lim, and M. U. Ahmed, J. Electroanal. Chem., 2019, 833, 462-470. https://doi.org/10.1016/j.jelechem.2018.12.031
  29. H. Wang, W. Guo, and M. Pei, New J. Chem., 2017, 41, 11600-11606. https://doi.org/10.1039/C7NJ01774J
  30. N. X. Viet, M. Chikae, Y. Ukita, K. Maehashi, K. Matsumoto, E. Tamiya, P. H. Viet, and Y. Takamura, Biosens. Bioelectron., 2013, 42, 592-597. https://doi.org/10.1016/j.bios.2012.11.017
  31. S. A. Lim, H. Yoshikawa, E. Tamiya, H. M. Yasin, and M. U. Ahmed, RSC Adv., 2014, 4, 58460-58466. https://doi.org/10.1039/C4RA11066H
  32. M. Roushani, A. Valipour, and M. Valipour, Mater. Sci. Eng. C, 2016, 61, 344-350. https://doi.org/10.1016/j.msec.2015.12.088