DOI QR코드

DOI QR Code

Design and Analysis of Spider Bionic Flow Field for Proton Exchange Membrane Fuel Cell

  • Jian Yao (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Fayi Ya (School of Mechanical and Electronic Engineering, Shandong Jianzhu University) ;
  • Xuejian Pei (School of Mechanical and Electronic Engineering, Shandong Jianzhu University)
  • Received : 2022.06.28
  • Accepted : 2022.08.27
  • Published : 2023.02.28

Abstract

Proton exchange membrane fuel cell (PEMFC) is a portable and clean power generation device. The structural arrangement of the flow field has a significant influence on the delivery efficiency of PEMFC. In this article, a new bionic flow channel is designed based on the inspiration of a spider shape. The branch channel width and branch corner are studied as the focus, and its simulation is carried out by the method of computational fluid dynamics (CFD). The results show that when channel width/rib width and corner of the branch are 1.5 and 130° , respectively, it is the best numerical combination and the cell comprehensive performance is excellent. The final model using this numerical combination is compared with the traditional flow channel model to verify the advancement of this scheme.

Keywords

Acknowledgement

Thanks for the support of the Shandong Provincial major science and technology innovation project (2018-CXGC0803).

References

  1. G. Zhang, L. Guo, B. Ma, and H. Liu, J. Power Sources, 2009, 188(1), 213-219. https://doi.org/10.1016/j.jpowsour.2008.10.074
  2. X. Zeng, Y. Ge, J. Shen, L. Zeng, Z. Liu, and W. Liu, Int. J. Heat Mass Transfer, 2017, 105, 81-89. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.068
  3. K. Xiong, W. Wu, S. Wang, and L. Zhang, Appl. Energy, 2021, 301, 117443.
  4. L. Xia, Z. Yu, G. Xu, S. Ji, and B. Sun, Energy Convers. Manage., 2021, 247, 114707.
  5. C.-T. Wang, Y.-T. Ou, B.-X. Wu, S. Thangavel, S.-W. Hong, W.-T. Chung, and W.-M. Yan, Energy Procedia, 2017, 142, 667-673. https://doi.org/10.1016/j.egypro.2017.12.110
  6. Q. Tan, H. Lei, and Z. Liu, Int. J. Hydrog. Energy, 2022, 47(23), 11975-11990. https://doi.org/10.1016/j.ijhydene.2022.01.243
  7. C.-T. Wang, Y.-C. Hu, and P.-L. Zheng, Appl. Energy, 2010, 87(4), 1366-1375. https://doi.org/10.1016/j.apenergy.2009.05.039
  8. M. K. Vijayakrishnan, K. Palaniswamy, J. Ramasamy, T. Kumaresan, K. Manoharan, T. K. R. Rajagopal, T. Maiyalagan, V. R. Jothi, and S. C. Yi, Int. J. Hydrog. Energy, 2020, 45(13), 7848-7862. https://doi.org/10.1016/j.ijhydene.2019.05.205
  9. V. H. Rangel-Hernandez, C. Damian-Ascencio, D. Juarez-Robles, A. Gallegos-Munoz, A. Zaleta-Aguilar, and H. Plascencia-Mora, Energy, 2011, 36(8), 4864- 4870. https://doi.org/10.1016/j.energy.2011.05.031
  10. S. Liu, T. Chen, Y. Xie, J. Zhang, and C. Wu, Int. J. Hydrog. Energy, 2019, 44(56), 29618-29630. https://doi.org/10.1016/j.ijhydene.2019.06.046
  11. M. Liu, H. Huang, X. Li, X. Guo, T. Wang, and H. Lei, Int. J. Hydrog. Energy, 2021, 46(75), 37379-37392. https://doi.org/10.1016/j.ijhydene.2021.09.022
  12. F. Liu, M. Kvesic, K. Wippermann, U. Reimer, and W. Lehnert, J. Electrochem. Soc., 2013, 160(8), F892-F897. https://doi.org/10.1149/2.116308jes
  13. S. B. Li and Y. L. Liu, Appl. Mech. Mater., 2011, 63-64, 365-368. https://doi.org/10.4028/www.scientific.net/AMM.63-64.365
  14. M. Marappan, K. Palaniswamy, T. Velumani, K. B. Chul, R. Velayutham, P. Shivakumar, and S. Sundaram, Chem. Rec., 2021, 21(4), 663-714. https://doi.org/10.1002/tcr.202000138
  15. M. Sauermoser, N. Kizilova, B. G. Pollet, and S. Kjelstrup, Front. Energy Res., 2020, 8, 13.
  16. T. Chen, Y. Xiao, and T. Chen, Energy Procedia, 2012, 28, 134-139. https://doi.org/10.1016/j.egypro.2012.08.047
  17. H. Huang, H. Lei, M. Liu, T. Wang, C. Li, X. Guo, Y. Chen, and M. Pan, Energy Convers. Manag., 2020, 226, 113546.
  18. J. P. Kloess, X. Wang, J. Liu, Z. Shi, and L. Guessous, J. Power Sources, 2009, 188, 132-140. https://doi.org/10.1016/j.jpowsour.2008.11.123
  19. D. K. Dang and B. Zhou, Int. J. Energy Res., 2021, 45(14), 20285-20301. https://doi.org/10.1002/er.7113
  20. A. Iranzo, C. H. Arredondo, A. M. Kannan and F. Rosa, Energy, 2020, 190, 116435.
  21. S. Zhang, H. Xu, Z. Qu, S. Liu and F. K. Talkhoncheh, J. Power Sources, 2022, 522, 231003.
  22. S. R. Badduri, G. N. Srinivasulu, and S. S. Rao, Chin. J. Chem. Eng., 2020, 28(3), 824-831. https://doi.org/10.1016/j.cjche.2019.07.010
  23. T. Chen, Y. Xiao, and T. Chen. Energy Procedia, 2012, 28, 134-139. https://doi.org/10.1016/j.egypro.2012.08.047
  24. S. Zhang, S. Liu, H. Xu, G. Liu, and K. Wang, Energy, 2022, 239, 122102.
  25. Q. Xie and M. Zheng, Processes, 2021, 9(9), 1526.
  26. S. Y. Zhang, Z. G. Qu, H. T. Xu, F. K. Talkhoncheh, S. Liu, and Q. Gao, Int. J. Hydrog. Energy, 2021, 46(54), 27700-27708. https://doi.org/10.1016/j.ijhydene.2021.05.207
  27. J. Y. Jang, C. H. Cheng, W. T. Liao, Y. X. Huang, and Y. C. Tsai, Appl. Energy, 2012, 99, 67-79. https://doi.org/10.1016/j.apenergy.2012.04.011
  28. T. Monsaf, B. M. Hocine, S. Youcef, and M. Abdallah, Int. J. Hydrog. Energy, 2017, 42(2), 1237-1251. https://doi.org/10.1016/j.ijhydene.2016.12.084
  29. S. H. Han, N. H. Choi, and Y. D. Choi, Int. J. Hydrog. Energy, 2014, 39(6), 2628-2638. https://doi.org/10.1016/j.ijhydene.2013.08.063
  30. M. Z. Chowdhury and B.Timurkutluk, Energy, 2018, 161, 104-117. https://doi.org/10.1016/j.energy.2018.07.143
  31. W. Zhu and M. Zheng, Int. J. Heat Technol., 2019, 37(3), 733-740. https://doi.org/10.18280/ijht.370309