DOI QR코드

DOI QR Code

Effect of Edge-Chemistry on Graphene-Based Hybrid Electrode Materials for Energy Storage Device

  • Hyo-Young Kim (Department of Chemical Engineering, College of Engineering, Wonkwang University) ;
  • Ji-Woo Park (Department of Chemical Engineering, College of Engineering, Wonkwang University) ;
  • Seo Jeong Yoon (Department of Chemical Engineering, College of Engineering, Wonkwang University) ;
  • In-Yup Jeon (Department of Chemical Engineering, College of Engineering, Wonkwang University) ;
  • Young-Wan Ju (Department of Chemical Engineering, College of Engineering, Wonkwang University)
  • Received : 2022.07.21
  • Accepted : 2022.08.22
  • Published : 2023.02.28

Abstract

Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.

Keywords

Acknowledgement

This research was supported by Wonkwang University in 2021.

References

  1. Y.-W. Ju, G.-R. Choi, H.-R. Jung, and W.-J. Lee, Electrochim. Acta, 2008, 53(19), 5796-5803. https://doi.org/10.1016/j.electacta.2008.03.028
  2. H. P. Wu, D. W. He, Y. S. Wang, M. Fu, Z. L. Liu, J. G. Wang, and H. T. Wang, 2010 8th International Vacuum Electron Sources Conference and Nanocarbon, 2010, 465-466.
  3. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, J. Phys. Chem. C, 2009, 113(30), 13103-13107. https://doi.org/10.1021/jp902214f
  4. C. G. Liu, M. Liu, F. Li, and H. M. Cheng, Appl. Phys. Lett., 2008, 92(14), 143108.
  5. J. Libich, J. Maca, J. Vondrak, O. Cech, and M. Sedlarikova, J. Energy Storage, 2018, 17, 224-227. https://doi.org/10.1016/j.est.2018.03.012
  6. R. Kotz and M. Carlen, Electrochim. Acta, 2000, 45(15-16), 2483-2498. https://doi.org/10.1016/S0013-4686(00)00354-6
  7. L. L. Zhang, R. Zhou, and X. S. Zhao, J. Mater. Chem., 2010, 20(29), 5983-5992. https://doi.org/10.1039/c000417k
  8. A. Ghosh and Y. H. Lee, Chem. Sus. Chem., 2012, 5(3), 480-499. https://doi.org/10.1002/cssc.201100645
  9. R. M. A. P. Lima, M. C. A. De Oliveira, and H. P. de Oliveira, SN Appl. Sci., 2019, 1, 325.
  10. A. H. A. Rahim, N. Ramli, A. N. Nordin, and M. F. A. Wahab, Carbon Trends, 2021, 5, 100101.
  11. P. E. P. Win, J. Wang, X. Jia, B. Qi, W. Chen, L. He, and Y.-F. Song, J. Alloys Compd., 2020, 844, 156194.
  12. A. Childress, K. Ferri, and A. M. Rao, Carbon, 2018, 140, 377-384. https://doi.org/10.1016/j.carbon.2018.08.064
  13. A. Nulu, V. Nulu, J. S. Moon, and K. Y. Sohn, Korean J. Chem. Eng., 2021, 38, 1923-1933. https://doi.org/10.1007/s11814-021-0813-5
  14. A. Nulu, V. Nulu, and K. Y. Sohn, Korean J. Chem. Eng., 2020, 37, 1795-1802. https://doi.org/10.1007/s11814-020-0559-5
  15. M. P. Down, S. J. Rowley-Neale, G. C. Smith, and C. E. Banks, ACS Appl. Energy Mater., 2018, 1(2), 707-714. https://doi.org/10.1021/acsaem.7b00164
  16. H. Qiu, T. Bechtold, L. Le, and W. Y. Lee, Powder Technol., 2015, 270A, 192-196. https://doi.org/10.1016/j.powtec.2014.10.025
  17. H. D. Pham, V. H. Pham, E.-S. Oh, J. S. Chung, and S. Kim, Korean J. Chem. Eng., 2012, 29, 125-129. https://doi.org/10.1007/s11814-011-0145-y
  18. A. P. Tiwari, T. Mukhiya, A. Muthurasu, K. Chhetri, M. Lee, B. Dahal, P. C. Lohani, and H.-Y. Kim, Electrochem, 2021, 2(2), 236-250. https://doi.org/10.3390/electrochem2020017
  19. Y. Zhou, X. Zhou, C. Ge, W. Zhou, Y. Zhu, and B. Xu, Mater. Lett., 2019, 246, 174-177. https://doi.org/10.1016/j.matlet.2019.03.074
  20. S. Ghosh, W. D. Yong, E. M. Jin, S. R. Polaki, S. M. Jeong, and H. Jun, Korean J. Chem. Eng., 2019, 36, 312-320. https://doi.org/10.1007/s11814-018-0199-1
  21. Z. S. Iro, C. Subramani, and S. S. Dash, Int. J. Electrochem. Sci., 2016, 11, 10628-10643. https://doi.org/10.20964/2016.12.50
  22. B.-J. Yoon, S.-H. Jeong, K.-H. Lee, H. S. Kim, C. G. Park, and J. H. Han, Chem. Phys. Lett., 2004, 388(1-3), 170-174. https://doi.org/10.1016/j.cplett.2004.02.071
  23. G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Nano Energy, 2013, 2(2), 213-234. https://doi.org/10.1016/j.nanoen.2012.10.006
  24. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrog. Energy, 2009, 34(11), 4889-4899. https://doi.org/10.1016/j.ijhydene.2009.04.005
  25. X. Du, P. Guo, H. Song, and X. Chen, Electrochim. Acta, 2010, 55(16), 4812-4819. https://doi.org/10.1016/j.electacta.2010.03.047
  26. N. C. D. Nath, I.-Y. Jeon, M. J. Ju, S. A. Ansari, J.-B. Baek, and J.-J. Lee, Carbon, 2019, 142, 89-98. https://doi.org/10.1016/j.carbon.2018.10.011
  27. I.-Y. Jeon, E.-K. Choi, S.-Y. Bae, and J.-B. Baek, Nanoscale Res. Lett., 2010, 5, 1686-1691. https://doi.org/10.1007/s11671-010-9697-8
  28. E.-K. Choi, I.-Y. Jeon, S.-J. Oh, and J.-B. Baek, J. Mater. Chem., 2010, 20, 10936-10942. https://doi.org/10.1039/c0jm01728k
  29. S.-Y. Bae, I.-Y. Jeon, J. Yang, N. Park, H. S. Shin, S. Park, R. S. Ruoff, L. Dai, and J.-B. Baek, ACS nano, 2011, 5(6), 4974-4980. https://doi.org/10.1021/nn201072m
  30. G.-J. Sohn, H.-J. Choi, I.-Y. Jeon, D. W. Chang, L. Dai, and J.-B. Baek, Acs Nano, 2012, 6(7), 6345-6355. https://doi.org/10.1021/nn301863d
  31. I.-Y. Jeon, Y.-R. Shin, G.-J. Sohn, H.-J. Choi, S.-Y. Bae, J. Mahmood, S.-M. Jung, J.-M. Seo, M.-J. Kim, and D. W. Chang, PNAS, 2012, 109(15), 5588-5593. https://doi.org/10.1073/pnas.1116897109
  32. I.-Y. Jeon, H.-J. Choi, S.-M. Jung, J.-M. Seo, M.-J. Kim, L. Dai, and J.-B. Baek, J. Am. Chem. Soc., 2013, 135(4), 1386-1393. https://doi.org/10.1021/ja3091643
  33. I.-Y. Jeon, J.-I. Choi, S.-G. Lee, H.-G. Chae, S.-S. Jang, S. Kumar, and J.-B. Baek, J. Phys. Chem. C, 2010, 114(35), 14868-14875. https://doi.org/10.1021/jp105918a