• Title/Summary/Keyword: Edge-Chemistry

Search Result 111, Processing Time 0.03 seconds

Effects of Edge Activator on the Droplet Size and Skin Permeation of Hydrated Liquid Crystalline Vesicles (Edge Activator가 수화 액정형 베시클의 입자크기와 피부 침투에 미치는 영향)

  • Lee, Seo Young;Lim, Yoon Mi;Jin, Byung Suk
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.679-684
    • /
    • 2017
  • Hydrated liquid crystalline vesicles incorporating a edge activator, which confers flexibility to the vesicle membranes, were prepared and niacinamide was encapsulated in them. The formation of liquid crystalline phases and their thermal phase transitions were investigated by polarized optical microscopy and differential scanning calorimetry (DSC), respectively. Droplet sizes of the vesicles were reduced to several tens of nanometers by incorporating edge activators, such as sodium deoxycholate, lysolecithin, or polysorbate 80. The amount of niacinamide permeated into a pig skin increased greatly using the hydrated liquid crystalline vesicles compared to the case where niacinamide was applied in an aqueous solution state. The vesicles incorporating 10% sodium deoxycholate increased the amount of niacinamide permeated nearly four times. These results suggest that edge activators are effective in improving the skin permeability of vesicles.

Ring Formation of Furan on Epitaxial Graphene (단결정 그라핀 위에서의 퓨란의 고리모양 형성)

  • Kim, Ki-Jeong;Yang, Se-Na;Park, Young-Chan;Lee, Han-Koo;Kim, Bong-Soo;Lee, Han-Gil
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.4
    • /
    • pp.252-257
    • /
    • 2011
  • The ring formation and electronic properties of furan adsorbed on graphene layers grown on 6H-SiC (0001) has been investigated using atomic force microscopy (AFM), near edge X-ray absorption fine structure (NEXAFS) spectra for the C K-edge, and core level photoemission spectroscopy (CLPES). Moreover, we observed that furan molecules adsorbed on graphene could be used for chemical functionalization via the lone pair electrons of the oxygen group, allowing chemical doping. We also found that furan spontaneously form rings with one of three different bonding configurations and the electronic properties of the ring formed by furan on graphene can be described using by AFM, NEXAFS and CLPES, respectively.

Bonding and Electronic Consideration in the Metal-Metal Bonded Edge Sharing Complexes

  • Jaejung Ko;Kuk-Tae Park;Ikchoon Lee;LEe Bon-Su
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.515-521
    • /
    • 1989
  • The molecular interaction of $W_2(NH_2)_4Cl_4$ fragment with chlorine ligands has been studied by means of extended Huckel calculations. We have extended the Huckel calculation to unknown edge-sharing $W_2(NH_2)_4Cl_4({\eta}-X)_2$ complexes (X = CO, H) in order to compare the stability of the complexes. The calculations showed that the size and electronic property of bridged ligand are important in determining the stability. The stabilities of the related metal-metal bonded edge-sharing complexes are discussed.

Effect of Edge-Chemistry on Graphene-Based Hybrid Electrode Materials for Energy Storage Device

  • Hyo-Young Kim;Ji-Woo Park;Seo Jeong Yoon;In-Yup Jeon;Young-Wan Ju
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • Owing to the rapid climate change, a high-performance energy storage system (ESS) for efficient energy consumption has been receiving considerable attention. ESS, such as capacitors, usually has issues with the ion diffusion of electrode materials, resulting in a decrease in their capacitance. Notably, appropriate pore diameter and large specific surface area (SSA) may result in an effective ion diffusion. Therefore, graphene and multi-walled carbon nanotube (graphene@MWCNT) hybrid nanomaterials, with covalent bonds between the graphene and MWCNT, were prepared via an edge-chemistry reaction. The properties of these materials, such as high porosity, large SSA, and high electroconductivity, make them suitable to be used as electrode materials for capacitors. The optimal ratio of graphene to MWCNT can affect the electrochemical performance of the electrode material based on its physical and electrochemical properties. The supercapacitor using optimal graphene-based hybrid electrode material exhibited highest specific capacitance value as 158 F/g and excellent cycle stability.

Comparative Study of Tetrahydrothiophene and Thiophene Self Assembled Monolayers on Au(111): Structure and Molecular Orientation

  • Ito, Eisuke;Hara, Masahiko;Kanai, Kaname;Ouchi, Yukio;Seki, Kazuhiko;Noh, Jaegeun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1755-1759
    • /
    • 2009
  • Surface structure and molecular orientation of self-assembled monolayers (SAMs) formed by the spontaneous adsorption of tetrahydrothiophene (THT) and thiophene (TP) on Au(111) were investigated by means of scanning tunneling microscopy (STM) and carbon K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STM imaging revealed that THT SAMs have a commensurate (3 ${\times}\;2\sqrt[]{3}$) structure containing structural defects in ordered domains, whereas TP SAMs are composed of randomly adsorbed domains and paired molecular row domains that can be described as an incommensurate packing structure. The NEXAFS spectroscopy study showed that the average tilt angle of the aliphatic THT ring and $\pi$-conjugated TP ring in the SAMs were calculated to be about $30^o\;and\;40^o$, respectively, from the surface normal. It was also observed that the $\pi$* transition peak in the NEXAFS spectrum of the TP SAMs is very weak, suggesting that a strong interaction between $\pi$-electrons and the Au surface arises during the self-assembly of TP molecules. In this study, we have clearly demonstrated that the surface structure and adsorption orientation of organic SAMs on Au(111) are strongly influenced by whether the cyclic ring is saturated or unsaturated.

Local Electronic Structures of $SiO_2$ Polymorph Crystals: Insights from O K-edge Energy-Loss Near-Edge Spectroscopy (산소 K-전자껍질 에너지-손실 흡수끝-부근 구조 양자계산을 이용한 $SiO_2$ 동질이상 광물의 전자구조 연구)

  • Yi, Yoo-Soo;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.403-411
    • /
    • 2010
  • Essentials of understanding the geochemical evolution and geophysical processes in Earth's system are macroscopic properties and atomistic (and electronic) structures of Earth materials. Recent advances in quantum calculations based on the density functional theory allow us to unveil the previously unknown details of local atomic structures in diverse silicates in Earth's interior. Here, we report the O K-edge ELNES (energy-loss near-edge structure; ELNES) spectra and PLDOS (partial local density of states) for oxygen atoms in ${\alpha}$-quartz and stishovite using the quantum calculations based on FP-LAPW (full potential linearized augmented plane wave). The calculated O K-edge ELNES spectrum of ${\alpha}$-quartz shows a strong peak at ~538 eV due to comer-sharing oxygen linking two $SiO_4$ tetrahedra and that for stishovite shows two distinct peaks at ~537 and ~543 eV corresponding to edge-sharing oxygen linking $SiO_6$ octahedra. The significant differences in spectral features of O K-edge ELNES spectra suggest that the O K-edge features can be useful indicator to distinguish various oxygen sites in diverse crystal and amorphous silicates in the Earth's interior.

The Band Edge Liminescence of SUrface Modified CdSe Nanocrystallites and Their Applications

  • Lee, Jin-Kyu;Kuno, Masaru K.;Bawendi, Moungi G.
    • Journal of Photoscience
    • /
    • v.5 no.4
    • /
    • pp.175-179
    • /
    • 1998
  • In this paper, a brief overview of nanocrystallites of metal and semi-conductor materials will be presented, and then the novel synthetic method of high quality CdSe nanocrystallites developed by Bawendi group at MIT will be introduced . It will be shown that results of optical properties of surface modified nanocrystallites give the evidence that the luminescence of CdSe nanocrystallites is not originated from surface related trap states, but from intrinsic spin forbidden core states. Some of the interesting applications of CdSe nano-crystallites will also be discussed at the end.

  • PDF